Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays

被引:42
作者
Wang, Jintao [1 ]
Zhao, Caidi [2 ]
Caraballo, Tomas [3 ]
机构
[1] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[3] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, Seville 41012, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2020年 / 91卷
关键词
Globally modified Navier-Stokes equations; Unbounded variable delays; Invariant measures; Pullback attractors; DISSIPATIVE DYNAMICAL-SYSTEMS; PULLBACK ATTRACTORS; 3-DIMENSIONAL SYSTEM; STATISTICAL SOLUTIONS; ASYMPTOTIC-BEHAVIOR; 2D-NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; V-ATTRACTORS; REGULARITY;
D O I
10.1016/j.cnsns.2020.105459
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates the three-dimensional globally modified Navier-Stokes equations with unbounded variable delays. Firstly, we prove the global well-posedness of the solutions, and give the existence of the pullback attractor for the associated process. Then, we construct a family of invariant Borel probability measures, which is supported by the pullback attractor. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 48 条
[1]  
[Anonymous], 2013, APPL MATH SCI
[2]  
[Anonymous], 2010, SEMA J, DOI DOI 10.1007/BF03322562
[3]  
Aubin J., 1984, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[4]   Attractors for differential equations with unbounded delays [J].
Caraballo, T. ;
Marin-Rubio, P. ;
Valero, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (02) :311-342
[5]   Attractors for 2D-Navier-Stokes models with delays [J].
Caraballo, T ;
Real, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :271-297
[6]   Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays [J].
Caraballo, T ;
Real, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2040) :3181-3194
[7]   Navier-Stokes equations with delays [J].
Caraballo, T ;
Real, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014) :2441-2453
[8]  
Caraballo T, 2008, DISCRETE CONT DYN-B, V10, P760
[9]  
Caraballo T, 2006, ADV NONLINEAR STUD, V6, P411
[10]   THREE-DIMENSIONAL SYSTEM OF GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH DELAY [J].
Caraballo, Tomas ;
Real, Jose ;
Marquez, Antonio M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09) :2869-2883