Eigenvalue problems with indefinite weight

被引:0
作者
Szulkin, A [1 ]
Willem, M
机构
[1] Univ Stockholm, Dept Math, S-10691 Stockholm, Sweden
[2] Univ Catholique Louvain, Inst Math Pure & Appl, B-1348 Louvain, Belgium
关键词
eigenvalue problem; Laplacian; p-Laplacian; indefinite weight;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the linear eigenvalue problem -Delta u = lambda V(x)u, u is an element of D-0(1,2)(Omega), and its nonlinear generalization -Delta(p)u = lambda V(x)\u\(p-2)u, u is an element of D-0(1,p)(Omega). The set Omega need not be bounded, in particular, Omega = R-N is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence df eigenvalues lambda(n) --> infinity.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 20 条
[2]  
Allegretto W., 1995, FUNKC EKVACIOJ-SER I, V38, P233
[3]  
[Anonymous], 1993, TOPOL METHOD NONL AN, DOI DOI 10.12775/TMNA.1993.012
[4]  
[Anonymous], 1997, ADV DIFFER EQU-NY
[5]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[6]   PRINCIPAL EIGENVALUES FOR PROBLEMS WITH INDEFINITE WEIGHT FUNCTION ON RN [J].
BROWN, KJ ;
COSNER, C ;
FLECKINGER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :147-155
[7]   THE EXISTENCE OF PRINCIPAL EIGENVALUES FOR PROBLEMS WITH INDEFINITE WEIGHT FUNCTION ON R(K) [J].
BROWN, KJ ;
TERTIKAS, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :561-569
[8]   Bifurcation problems for the p-Laplacian in R(N) [J].
Drabek, P ;
Huang, YX .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (01) :171-188
[9]  
Drabek P., 1997, COMMENT MATH U CAROL, V38, P421
[10]  
Huang Y., 1995, Comment. Math. Univ. Carolin, V36, P519