An algorithm for computing quasi-homogeneous formal normal forms under equivalence

被引:18
作者
Algaba, A
Freire, E
Gamero, E
García, C
机构
[1] Univ Huelva, Fac Ciencias Expt, Dept Matemat, Huelva 21071, Spain
[2] Univ Seville, Escuela Super Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
normal forms; autonomous dynamical systems;
D O I
10.1023/B:ACAP.0000018769.73927.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a recursive algorithm which is useful for computing normal forms of vector fields using smooth orbital equivalence. The case of vector fields with a singularity corresponding to a triple-zero eigenvalue with geometric multiplicity one is considered in detail. The results obtained are applied to the study of a simple electronic device, with only one nonlinearity.
引用
收藏
页码:335 / 359
页数:25
相关论文
共 20 条
[1]   Quasi-homogeneous normal forms [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) :193-216
[2]   Hypernormal forms for equilibria of vector fields. Codimension one linear degeneracies [J].
Algaba, A ;
Freire, E ;
Gamero, E .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (01) :13-45
[3]  
Bogdanov R. I., 1975, Funct. Anal. & Appl., V9, P144
[4]  
BOGDANOV RI, 1979, T SEM PETROVSK, V5, P51
[5]   TOPOLOGICAL EQUIVALENCE OF A PLANE VECTOR FIELD WITH ITS PRINCIPAL PART DEFINED THROUGH NEWTON POLYHEDRA [J].
BRUNELLA, M ;
MIARI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (02) :338-366
[6]  
Bruno A. D., 1989, Local methods in nonlinear differential equations
[7]  
Chow S-N., 2012, METHODS BIFURCATION
[8]  
Doedel E.J., 1998, AUTO97 CONTINUATION
[9]   New aspects in the unfolding of the nilpotent singularity of codimension three [J].
Dumortier, F ;
Ibáñez, S ;
Kokubu, H .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (01) :63-95
[10]   Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields [J].
Dumortier, F ;
Ibanez, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (02) :590-647