On nonlinear Schrodinger equations on the hyperbolic space

被引:1
|
作者
Cencelj, Matija [1 ,2 ,3 ]
Farago, Istvan [4 ,5 ,7 ]
Horvath, Robert [6 ,7 ]
Repovs, Dusan D. [1 ,2 ,3 ]
机构
[1] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Budapest, Hungary
[6] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
[7] MTA ELTE NumNet Res Grp, Budapest, Hungary
关键词
Schrodinger equation; Poincare ball model; Palais principle; Laplace-Beltrami operator; Hadamard manifold; Kirchhoff-type problem; CRITICAL-POINT THEOREM; ELLIPTIC PROBLEMS; EXISTENCE; COMPACTNESS; MULTIPLICITY; BOUNDARY; SOBOLEV; SYSTEMS;
D O I
10.1016/j.jmaa.2020.124516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of weak solutions for certain classes of nonlinear Schrodinger equations on the Poincare ball model B-N, N >= 3. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Goundstates and radial solutions to nonlinear Schrodinger-Poisson-Slater equations at the critical frequency
    Mercuri, Carlo
    Moroz, Vitaly
    Van Schaftingen, Jean
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
  • [32] The initial value problem for nonlinear Schrodinger equations with a dissipative nonlinearity in one space dimension
    Jin, Guangzhi
    Jin, Yuanfeng
    Li, Chunhua
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (04) : 983 - 995
  • [33] GLOBAL WELL-POSEDNESS OF SEMILINEAR HYPERBOLIC EQUATIONS, PARABOLIC EQUATIONS AND SCHRODINGER EQUATIONS
    Xu, Runzhang
    Chen, Yuxuan
    Yang, Yanbing
    Chen, Shaohua
    Shen, Jihong
    Yu, Tao
    Xu, Zhengsheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [34] Remarks on the nonlinear Schrodinger equations in plasma
    GUO Boling and WU YonghuiInstitute of Applied Physics and Computational Mathematics
    ChineseScienceBulletin, 1997, (22) : 1875 - 1877
  • [35] Poincar,-Sobolev equations in the hyperbolic space
    Bhakta, Mousomi
    Sandeep, K.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) : 247 - 269
  • [36] QUADRATIC MORAWETZ INEQUALITIES AND ASYMPTOTIC COMPLETENESS IN THE ENERGY SPACE FOR NONLINEAR SCHRODINGER AND HARTREE EQUATIONS
    Ginibre, Jean
    Velo, Giorgio
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 113 - 134
  • [37] NORMALIZED SOLUTIONS FOR 3-COUPLED NONLINEAR SCHRODINGER EQUATIONS
    Liu, Chuangye
    Tian, Rushun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (11) : 5115 - 5130
  • [38] A KAM Theorem for Higher Dimensional Forced Nonlinear Schrodinger Equations
    Xue, Shuaishuai
    Geng, Jiansheng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (03) : 979 - 1010
  • [39] NODAL BOUND STATES WITH CLUSTERED SPIKES FOR NONLINEAR SCHRODINGER EQUATIONS
    Dai, Jinjun
    He, Qihan
    Li, Biwen
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) : 1892 - 1906
  • [40] Standing waves for coupled nonlinear Schrodinger equations with decaying potentials
    Chen, Zhijie
    Zou, Wenming
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (11)