On nonlinear Schrodinger equations on the hyperbolic space

被引:1
|
作者
Cencelj, Matija [1 ,2 ,3 ]
Farago, Istvan [4 ,5 ,7 ]
Horvath, Robert [6 ,7 ]
Repovs, Dusan D. [1 ,2 ,3 ]
机构
[1] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Budapest, Hungary
[6] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
[7] MTA ELTE NumNet Res Grp, Budapest, Hungary
关键词
Schrodinger equation; Poincare ball model; Palais principle; Laplace-Beltrami operator; Hadamard manifold; Kirchhoff-type problem; CRITICAL-POINT THEOREM; ELLIPTIC PROBLEMS; EXISTENCE; COMPACTNESS; MULTIPLICITY; BOUNDARY; SOBOLEV; SYSTEMS;
D O I
10.1016/j.jmaa.2020.124516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of weak solutions for certain classes of nonlinear Schrodinger equations on the Poincare ball model B-N, N >= 3. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Positive bound states of systems of nonlinear Schrodinger equations
    Chu, Jifeng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1983 - 1992
  • [22] Localization of normalized solutions for saturable nonlinear Schrodinger equations
    Wang, Xiaoming
    Wang, Zhi-Qiang
    Zhang, Xu
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2495 - 2522
  • [23] Standing waves for a system of nonlinear Schrodinger equations in RN
    do O, Joao Marcos
    Miyagaki, Olimpio H.
    Santana, Claudia
    ASYMPTOTIC ANALYSIS, 2016, 96 (3-4) : 351 - 372
  • [24] A characterization related to Schrodinger equations on Riemannian manifolds
    Faraci, Francesca
    Farkas, Csaba
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [25] Global solutions of nonlinear Schrodinger equations
    Schechter, Martin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [26] Choreographies in the discrete nonlinear Schrodinger equations
    Calleja, Renato
    Doedel, Eusebius
    Garcia-Azpeitia, Carlos
    Pando, Carlos L. L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (5-6) : 615 - 624
  • [27] Remarks on the nonlinear Schrodinger equations in plasma
    Guo, BL
    Wu, YH
    CHINESE SCIENCE BULLETIN, 1997, 42 (22): : 1875 - 1877
  • [28] Normalized solutions of nonlinear Schrodinger equations
    Bartsch, Thomas
    de Valeriola, Sebastien
    ARCHIV DER MATHEMATIK, 2013, 100 (01) : 75 - 83
  • [29] ON DECAYING PROPERTIES OF NONLINEAR SCHRODINGER EQUATIONS
    Fan, Chenjie
    Staffilani, Gigliola
    Zhao, Zehua
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3082 - 3109
  • [30] Spiraling solutions of nonlinear Schrodinger equations
    Agudelo, Oscar
    Kuebler, Joel
    Weth, Tobias
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 592 - 625