On nonlinear Schrodinger equations on the hyperbolic space

被引:1
|
作者
Cencelj, Matija [1 ,2 ,3 ]
Farago, Istvan [4 ,5 ,7 ]
Horvath, Robert [6 ,7 ]
Repovs, Dusan D. [1 ,2 ,3 ]
机构
[1] Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Budapest, Hungary
[6] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
[7] MTA ELTE NumNet Res Grp, Budapest, Hungary
关键词
Schrodinger equation; Poincare ball model; Palais principle; Laplace-Beltrami operator; Hadamard manifold; Kirchhoff-type problem; CRITICAL-POINT THEOREM; ELLIPTIC PROBLEMS; EXISTENCE; COMPACTNESS; MULTIPLICITY; BOUNDARY; SOBOLEV; SYSTEMS;
D O I
10.1016/j.jmaa.2020.124516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of weak solutions for certain classes of nonlinear Schrodinger equations on the Poincare ball model B-N, N >= 3. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] NONLINEAR CHOQUARD EQUATIONS ON HYPERBOLIC SPACE
    He, Haiyang
    OPUSCULA MATHEMATICA, 2022, 42 (05) : 691 - 708
  • [2] Nonlinear Schrodinger Equations with Steep Magnetic Well
    Shirai, Shin-ichi
    TOKYO JOURNAL OF MATHEMATICS, 2013, 36 (01) : 1 - 23
  • [3] Multiplicity of semiclassical solutions to nonlinear Schrodinger equations
    Ding, Yanheng
    Wei, Juncheng
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 987 - 1010
  • [4] Nonlinear Schrodinger equations near an infinite well potential
    Bartsch, Thomas
    Parnet, Mona
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) : 363 - 379
  • [5] On some nonlinear Schrodinger equations in RN
    Wei, Juncheng
    Wu, Yuanze
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) : 1503 - 1528
  • [6] On the nonlinear Schrodinger equation on the Poincare ball model
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 201
  • [7] COUPLING TECHNIQUES FOR NONLINEAR HYPERBOLIC EQUATIONS
    Irmar, Benjamin Boutin
    Coquel, Frederic
    LeFloch, Philippe G.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 349 - 356
  • [8] Concentrating solutions for a class of nonlinear fractional Schrodinger equations in RN
    Ambrosio, Vincenzo
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1367 - 1414
  • [9] Exact Solutions of Hermitian Symmetric Space Derivative Nonlinear Schrodinger Equations
    Saleem, Usman
    Mahmood-ul Hassan
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (06)
  • [10] Normalized multibump solutions to nonlinear Schrodinger equations with steep potential well
    Tang, Zhongwei
    Zhang, Chengxiang
    Zhang, Luyu
    Zhou, Luyan
    NONLINEARITY, 2022, 35 (08) : 4624 - 4658