TRUDINGER-TYPE INEQUALITIES IN MUSIELAK-ORLICZ SPACES

被引:0
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Dannoharu Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima 7398524, Japan
来源
HOUSTON JOURNAL OF MATHEMATICS | 2022年 / 48卷 / 03期
关键词
Riesz potentials; Musielak-Orlicz spaces; Trudinger's inequality; metric measure space; lower Ahlfors regular; double phase functional; SOBOLEV SPACES; RIESZ-POTENTIALS; FUNCTIONALS; EMBEDDINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with Trudinger-type inequalities for variable Riesz potentials J(alpha(center dot),tau) f of functions in Musielak-Orlicz spaces L-Phi (X) over bounded metric measure spaces equipped with lower Ahlfors Q(x)-regular measures. As an application and example we obtain Trudinger's inequality for double phase functionals with variable exponents.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 22 条
  • [1] Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces
    Ahmida, Youssef
    Chlebicka, Iwona
    Gwiazda, Piotr
    Youssfi, Ahmed
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) : 2538 - 2571
  • [2] NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES
    Baroni, P.
    Colombo, M.
    Mingione, G.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 347 - 379
  • [3] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [4] Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
  • [5] Bounded Minimisers of Double Phase Variational Integrals
    Colombo, Maria
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) : 219 - 273
  • [6] Regularity for Double Phase Variational Problems
    Colombo, Maria
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 443 - 496
  • [7] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [8] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [9] Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
  • [10] Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX