NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications

被引:331
作者
Ju, Huai-Qiang [1 ,2 ]
Lin, Jin-Fei [1 ]
Tian, Tian [1 ]
Xie, Dan [1 ]
Xu, Rui-Hua [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Canc Ctr, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China, Guangzhou 510060, Peoples R China
[2] Chinese Acad Med Sci, Res Unit Precis Diag & Treatment Gastrointestinal, Guangzhou 510060, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PENTOSE-PHOSPHATE PATHWAY; ISOCITRATE DEHYDROGENASE 2; ONE-CARBON METABOLISM; FATTY-ACID OXIDATION; MALIC ENZYME ME2; REDOX HOMEOSTASIS; 6-PHOSPHOGLUCONATE DEHYDROGENASE; REDUCTIVE CARBOXYLATION; CELL-PROLIFERATION; INHIBITS GLUCOSE-6-PHOSPHATE-DEHYDROGENASE;
D O I
10.1038/s41392-020-00326-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy.
引用
收藏
页数:12
相关论文
共 192 条
[1]   Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line [J].
Ackerstaff, Ellen ;
Gimi, Barjor ;
Artemov, Dmitri ;
Bhujwalla, Zaver M. .
NEOPLASIA, 2007, 9 (03) :222-235
[2]   Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites [J].
Ai, Guoqiang ;
Dachineni, Rakesh ;
Kumar, D. Ramesh ;
Alfonso, Lloyd F. ;
Marimuthu, Srinivasan ;
Bhat, G. Jayarama .
MOLECULAR MEDICINE REPORTS, 2016, 14 (02) :1726-1732
[3]   Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight [J].
Al-Khallaf, Hamoud .
CELL AND BIOSCIENCE, 2017, 7
[4]   Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses [J].
Anastasiou, Dimitrios ;
Poulogiannis, George ;
Asara, John M. ;
Boxer, Matthew B. ;
Jiang, Jian-kang ;
Shen, Min ;
Bellinger, Gary ;
Sasaki, Atsuo T. ;
Locasale, Jason W. ;
Auld, Douglas S. ;
Thomas, Craig J. ;
Vander Heiden, Matthew G. ;
Cantley, Lewis C. .
SCIENCE, 2011, 334 (6060) :1278-1283
[5]   mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle [J].
Ben-Sahra, Issam ;
Hoxhaj, Gerta ;
Ricoult, Stephane J. H. ;
Asara, John M. ;
Manning, Brendan D. .
SCIENCE, 2016, 351 (6274) :728-733
[6]   Wild-Type IDH Enzymes as Actionable Targets for Cancer Therapy [J].
Bergaggio, Elisa ;
Piva, Roberto .
CANCERS, 2019, 11 (04)
[7]  
Bhanot H, 2017, ONCOTARGET, V8, P67639, DOI 10.18632/oncotarget.18797
[8]   Aiding and abetting roles of NOX oxidases in cellular transformation [J].
Block, Karen ;
Gorin, Yves .
NATURE REVIEWS CANCER, 2012, 12 (09) :627-637
[9]   Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target [J].
Buckley, Douglas ;
Duke, Gregory ;
Heuer, Timothy S. ;
O'Farrell, Marie ;
Wagman, Allan S. ;
McCulloch, William ;
Kemble, George .
PHARMACOLOGY & THERAPEUTICS, 2017, 177 :23-31
[10]   Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion [J].
Cai, Wei-Feng ;
Zhang, Cixiong ;
Wu, Yu-Qing ;
Zhuang, Gui ;
Ye, Zhiyun ;
Zhang, Chen-Song ;
Lin, Sheng-Cai .
CELL RESEARCH, 2018, 28 (08) :865-867