On the equivalence of Legendrian and transverse invariants in knot Floer homology

被引:22
|
作者
Baldwin, John A. [1 ]
Vela-Vick, David Shea [2 ]
Vertesi, Vera [3 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[3] Univ Nantes, CNRS, UMR6629, Lab Math Jean Leray, F-44322 Nantes, France
基金
美国国家科学基金会;
关键词
CONTACT; 3-MANIFOLDS; HOLOMORPHIC DISKS; NONSIMPLE KNOTS; LINKS;
D O I
10.2140/gt.2013.17.925
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the grid diagram formulation of knot Floer homology, Ozsvath, Szabo and Thurston defined an invariant of transverse knots in the tight contact 3-sphere. Shortly afterwards, Lisca, Ozsvath, Stipsicz and Szabo defined an invariant of transverse knots in arbitrary contact 3-manifolds using open book decompositions. It has been conjectured that these invariants agree where they are both defined. We prove this fact by defining yet another invariant of transverse knots, showing that this third invariant agrees with the two mentioned above.
引用
收藏
页码:925 / 974
页数:50
相关论文
共 50 条