Effects of the Sintering Conditions on the Mechanical Properties of Titanium-Carbide-Particle-Reinforced Magnesium Nanocomposites Fabricated by Mechanical Alloying/Mechanical Milling/Spark Plasma Sintering

被引:1
作者
Kawamori, Shigehiro [1 ]
Kawashima, Yoshihumi [2 ]
Fujiwara, Hiroshi [3 ]
Kuroda, Kiyoshi [1 ]
Kasuga, Yukio [1 ]
机构
[1] Tamagawa Univ, Dept Engn Design, Tokyo 1948610, Japan
[2] Tomoe Shokai Co Ltd, Tokyo 1448505, Japan
[3] Shizuoka Inst Sci & Technol, Dept Mech Engn, Shizuoka 4378555, Japan
关键词
mechanical alloying; mechanical milling; spark plasma sintering; titanium-carbide-particle-reinforced magnesium nanocomposites; mechanical properties; sintering conditions; residual stress;
D O I
10.2320/matertrans.M2017222
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To enhance the mechanical properties of Mg alloys, we have fabricated Mg/TiC composites by reinforcing the Mg matrix composed of nanosize crystal grains with 20 vol% TiC nanoparticles. The Mg/TiC nanocomposites were fabricated by mechanical milling (MM) and spark plasma sintering (SPS). The TiC nanoparticles were produced by mechanical alloying (MA). The effects of the applied pressure and holding time during SPS on the mechanical properties of this nanocomposite were investigated. Microstructure observations and elemental analysis show that the TiC particles (TiCp) in the nanocomposites have an ultrafine microstructure with an average particle size of approximately 9 nm and they aggregate within the Mg matrix. The Vickers hardness of the nanocomposites increases to 150 HV when the SPS applied pressure and holding time are increased. However, the increase in the hardness is accompanied by a decrease in the bending strength. The main factors for the improvement of the mechanical properties of the 20 vol% TiCp/Mg nanocomposite are considered to be the density and compressive residual stress.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [41] Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering
    Hong-lei Wang
    Tai-xiu Gao
    Jia-zheng Niu
    Pei-jian Shi
    Jing Xu
    Yan Wang
    International Journal of Minerals, Metallurgy, and Materials, 2016, 23 : 77 - 82
  • [42] Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering
    Xiao Shu-long
    Xu Li-juan
    Chen Yu-yong
    Yu Hong-bao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 (05) : 1086 - 1091
  • [43] Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering
    Necas, David
    Marek, Ivo
    Pinc, Jan
    Vojtech, Dalibor
    Kubasek, Jiri
    MATERIALS, 2022, 15 (15)
  • [44] Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering
    Munir, Khurram S.
    Zheng, Yifeng
    Zhang, Deliang
    Lin, Jixing
    Li, Yuncang
    Wen, Cuie
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 688 : 505 - 523
  • [45] Microstructure and Mechanical Properties of Titanium Processed by Spark Plasma Sintering (SPS)
    Chaudhari R.
    Bauri R.
    Metallography, Microstructure, and Analysis, 2014, 3 (1) : 30 - 35
  • [46] Synthesis and Thermoelectric Properties of SnSe by Mechanical Alloying and Spark Plasma Sintering Method
    Hongliang Liu
    Xin Zhang
    Songhao Li
    Ziqun Zhou
    Yanqin Liu
    Jiuxing Zhang
    Journal of Electronic Materials, 2017, 46 : 2629 - 2633
  • [47] Synthesis and Thermoelectric Properties of SnSe by Mechanical Alloying and Spark Plasma Sintering Method
    Liu, Hongliang
    Zhang, Xin
    Li, Songhao
    Zhou, Ziqun
    Liu, Yanqin
    Zhang, Jiuxing
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (05) : 2629 - 2633
  • [48] The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering
    Kermani, Milad
    Razavi, Mansour
    Rahimipour, Mohammad Reza
    Zakeri, Mohammad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 593 : 242 - 249
  • [49] Microstructure and mechanical properties of CoCrFeNiTa high entropy alloy prepared by mechanical alloying and spark plasma sintering
    Tang, Xingchang
    Hou, Yuanyuan
    Wang, Canglong
    Liu, Yiwen
    Meng, Zhaocang
    Wang, Yinlong
    Cheng, Ganghu
    Zhou, Weilian
    La, Peiqing
    MATERIALS CHARACTERIZATION, 2024, 210
  • [50] Sintering Behavior and Mechanical Properties of Magnesium/β-Tricalcium Phosphate Composites Sintered by Spark Plasma Sintering
    Narita, Kai
    Kobayashi, Equo
    Sato, Tatsuo
    MATERIALS TRANSACTIONS, 2016, 57 (09) : 1620 - 1627