Tensor products of division algebras and fields

被引:10
|
作者
Rowen, Louis [1 ]
Saltman, David J. [2 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Division algebra; Schur index; Ramification; Picard group; Brauer group;
D O I
10.1016/j.jalgebra.2013.07.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper began as an investigation of the question of whether D-1 circle times(F) D-2 is a domain where the D-i are division algebras and F is an algebraically closed field contained in their centers. We present an example where the answer is "no", and also study the Picard group and Brauer group properties of F-1 circle times(F) F-2 where the F-i are fields. Finally, as part of our example, we have results about division algebras and Brauer groups over curves. Specifically, we give a splitting criterion for certain Brauer group elements on the product of two curves over F. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:296 / 309
页数:14
相关论文
共 50 条
  • [21] Division Algebras and Quantum Theory
    John C. Baez
    Foundations of Physics, 2012, 42 : 819 - 855
  • [22] Indecomposable and noncrossed product division algebras over function fields of smooth p-adic curves
    Brussel, E.
    McKinnie, K.
    Tengan, E.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4316 - 4337
  • [23] DIVISION ALGEBRAS THAT RAMIFY ONLY ON THE ZEROS OF AN ELEMENTARY SYMMETRIC POLYNOMIAL
    Ford, Timothy J.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 2 : 189 - 207
  • [24] Valuations on tensor powers of a division algebra
    Morandi, PJ
    Sethuraman, BA
    JOURNAL OF ALGEBRA, 2005, 293 (02) : 385 - 394
  • [25] Division algebras with the same maximal subfields
    Chernousov, V. I.
    Rapinchuk, A. S.
    Rapinchuk, I. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (01) : 83 - 112
  • [26] DIVISION ALGEBRAS WITH RADICABLE MULTIPLICATIVE GROUPS
    Mahdavi-Hezavehi, M.
    Motiee, M.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4084 - 4096
  • [27] Division Algebras with Left Algebraic Commutators
    M. Aaghabali
    S. Akbari
    M. H. Bien
    Algebras and Representation Theory, 2018, 21 : 807 - 816
  • [28] Galois subfields of tame division algebras
    Timo Hanke
    Danny Neftin
    Adrian Wadsworth
    Israel Journal of Mathematics, 2016, 211 : 367 - 389
  • [29] Division Algebras with Left Algebraic Commutators
    Aaghabali, M.
    Akbari, S.
    Bien, M. H.
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (04) : 807 - 816
  • [30] Exhaustive construction of four-dimensional unital division algebras over finite fields with Kleinian automorphism group
    Bani-Ata, Mashhour Al-Ali
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (01): : 111 - 122