The partial derivative-equation on a positive current

被引:51
作者
Berndtsson, B [1 ]
Sibony, N
机构
[1] CTH, Dept Math, S-41296 Gothenburg, Sweden
[2] Univ Paris 11, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1007/S002220100178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the induced partial derivative-equation on a positive current in: a complex manifold. We extend the L-2-estimates for the partial derivative-equation to harmonic currents of bidimension (1, 1), satisfying a Frobenius type condition. We, also show that the L-2-estimates are satisfied for the partial derivative-equation on a positive closed current of bidegree (1, 1) on a pseudoconvex domain in C-n.
引用
收藏
页码:371 / 428
页数:58
相关论文
共 21 条
[1]  
Andreotti A., 1965, PUBL MATH-PARIS, V25, P81
[2]  
Carleson L., 1967, VANNOSTRAND MATH STU
[3]  
DEMAILLY JP, 1982, ANN SCI ECOLE NORM S, V15, P457
[4]   L2-COHOMOLOGY AND INDEX THEOREM FOR THE BERGMAN METRIC [J].
DONNELLY, H ;
FEFFERMAN, C .
ANNALS OF MATHEMATICS, 1983, 118 (03) :593-618
[5]   KAHLERIAN CHARACTERIZATION OF RATIONALLY CONVEX SURFACES [J].
DUVAL, J .
ACTA MATHEMATICA, 1994, 172 (01) :77-89
[6]   POLYNOMIAL CONVEXITY, RATIONAL CONVEXITY, AND CURRENTS [J].
DUVAL, J ;
SIBONY, N .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (02) :487-513
[7]   FOLIATIONS, THE ERGODIC THEOREM AND BROWNIAN-MOTION [J].
GARNETT, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 51 (03) :285-311
[8]  
GHYS E, 1999, PANORAMAS SYNTHESES, P49
[9]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[10]  
HARVEY R, 1974, VALUE DISTRIBUTION T