A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

被引:119
作者
Chen, Juanni [1 ]
Wang, Xiuping [1 ]
Han, Heyou [1 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, Coll Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Xanthomonas oryzae pv. oryzae; Graphene; Antibacterial activity; Mechanisms; Bactericide; Agriculture; WALLED CARBON NANOTUBES; TOXICITY; NANOMATERIALS; REDUCTION;
D O I
10.1007/s11051-013-1658-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Xanthomonas oryzae pv. oryzae (Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 mu g/mL), almost killing 94.48 % cells, in comparison to common bactericide bismerthiazol with only 13.3 % mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[2]   Inactivation of Bacterial Pathogens by Carbon Nanotubes in Suspensions [J].
Arias, L. Renea ;
Yang, Liju .
LANGMUIR, 2009, 25 (05) :3003-3012
[3]   Graphene-inorganic nanocomposites [J].
Bai, Song ;
Shen, Xiaoping .
RSC ADVANCES, 2012, 2 (01) :64-98
[4]   Signaling in plant-microbe interactions [J].
Baker, B ;
Zambryski, P ;
Staskawicz, B ;
DineshKumar, SP .
SCIENCE, 1997, 276 (5313) :726-733
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce [J].
Begurn, Parvin ;
Ikhtiari, Refi ;
Fugetsu, Bunshi .
CARBON, 2011, 49 (12) :3907-3919
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]   In vitro toxicity evaluation of graphene oxide on A549 cells [J].
Chang, Yanli ;
Yang, Sheng-Tao ;
Liu, Jia-Hui ;
Dong, Erya ;
Wang, Yanwen ;
Cao, Aoneng ;
Liu, Yuanfang ;
Wang, Haifang .
TOXICOLOGY LETTERS, 2011, 200 (03) :201-210
[9]   Interactions between dendrimer biocides and bacterial membranes [J].
Chen, CZS ;
Cooper, SL .
BIOMATERIALS, 2002, 23 (16) :3359-3368
[10]   Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture [J].
Dang, T. C. ;
Fujii, M. ;
Rose, A. L. ;
Bligh, M. ;
Waite, T. D. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (05) :1574-1583