A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids

被引:36
作者
Lindenkamp, Nicole [1 ]
Schuermann, Marc [1 ]
Steinbuechel, Alexander [1 ,2 ]
机构
[1] Univ Munster, Inst Mol Mikrobiol & Biotechnol, D-48149 Munster, Germany
[2] King Abdulaziz Univ, Dept Environm Sci, Jeddah 21413, Saudi Arabia
关键词
Polyhydroxyalkanoates; Poly(3-hydroxybutyrate); Propionate-CoA-transferase; Family I CoA-transferase; Ralstonia eutropha H16; COENZYME-A-TRANSFERASE; ESCHERICHIA-COLI; ADVENELLA-MIMIGARDEFORDENSIS; ACIDAMINOCOCCUS-FERMENTANS; ALCALIGENES-EUTROPHUS; POLYLACTIC ACID; POLYESTERS; CLONING; GENES; IDENTIFICATION;
D O I
10.1007/s00253-012-4624-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (alpha(4)). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16a dagger pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating other CoA-transferase(s) or CoA-synthetase(s), thereby compensating for the lacking Pct. The ability of R. eutropha H16 to substitute absent enzymes by isoenzymes has been already shown in different other studies in the past.
引用
收藏
页码:7699 / 7709
页数:11
相关论文
共 47 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   OCCURRENCE, METABOLISM, METABOLIC ROLE, AND INDUSTRIAL USES OF BACTERIAL POLYHYDROXYALKANOATES [J].
ANDERSON, AJ ;
DAWES, EA .
MICROBIOLOGICAL REVIEWS, 1990, 54 (04) :450-472
[3]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[4]   An overview of polylactides as packaging materials [J].
Auras, R ;
Harte, B ;
Selke, S .
MACROMOLECULAR BIOSCIENCE, 2004, 4 (09) :835-864
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]  
Brandl H, 1988, APPL ENVIRON MICROB, V66, P2117
[7]   Elucidation of β-Oxidation Pathways in Ralstonia eutropha H16 by Examination of Global Gene Expression [J].
Brigham, Christopher J. ;
Budde, Charles F. ;
Holder, Jason W. ;
Zeng, Qiandong ;
Mahan, Alison E. ;
Rha, ChoKyun ;
Sinskey, Anthony J. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (20) :5454-5464
[8]   GLUTACONATE COA-TRANSFERASE FROM ACIDAMINOCOCCUS-FERMENTANS [J].
BUCKEL, W ;
DORN, U ;
SEMMLER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 118 (02) :315-321
[9]   Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family [J].
CorthesyTheulaz, IE ;
Bergonzelli, GE ;
Henry, H ;
Bachmann, D ;
Schorderet, DF ;
Blum, AL ;
Ornston, LN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25659-25667
[10]   Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha [J].
Han, Xuerong ;
Satoh, Yasuharu ;
Satoh, Toshifumi ;
Matsumoto, Ken'ichiro ;
Kakuchi, Toyoji ;
Taguchi, Seiichi ;
Dairi, Tohru ;
Munekata, Masanobu ;
Tajima, Kenji .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 92 (03) :509-517