-trees and laminations for free groups I: algebraic laminations

被引:37
作者
Coulbois, Thierry [1 ]
Hilion, Arnaud [1 ]
Lustig, Martin [1 ]
机构
[1] Univ Paul Cezanne Aix Marseille III, Math LATP, F-13397 Marseille 20, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 78卷
关键词
D O I
10.1112/jlms/jdn052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is the first of a sequence of three papers, where the concept of a real tree dual to a measured geodesic lamination in a hyperbolic surface is generalized to arbitrary real trees provided with a (very small) action of a free group by isometries. Laminations for free groups are defined with care in three different approaches: algebraic laminations, symbolic laminations, and laminary languages. The topology on the space of laminations and the action of the outer automorphisms group are detailed.
引用
收藏
页码:723 / 736
页数:14
相关论文
共 16 条
  • [11] Currents on free groups
    Kapovich, I
    [J]. TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 149 - +
  • [12] The frequency space of a free group
    Kapovich, I
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (5-6) : 939 - 969
  • [13] IRREDUCIBLE AUTOMORPHISMS OF Fn HAVE NORTH-SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE
    Levitt, Gilbert
    Lustig, Martin
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2003, 2 (01) : 59 - 72
  • [14] Lustig M., 1992, AUTOMORPHISMEN FREIE
  • [15] Martin R., 1995, THESIS UCLA
  • [16] Narbel P., 1996, International Journal of Algebra and Computation, V6, P229, DOI 10.1142/S0218196796000118