Modified tungsten oxide as a binder-free anode in lithium-ion battery for improving electrochemical stability

被引:41
作者
Hou, Jia-Bin [1 ]
Zhang, Ke [1 ]
Xiao, Jin-Hua [1 ]
Xu, Zi-Qi [1 ]
Gao, Wen-Jing [1 ]
Gao, Xin-Yi [1 ]
Zhou, Si-Ke [1 ]
Jiao, Ze-Zhou [1 ]
Yi, Meng-Ru [1 ]
Yin, Yan-Hong [1 ,2 ,3 ]
Wu, Zi-Ping [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Fac Mat Met & Chem, Ganzhou 341000, Peoples R China
[2] Chongyi Zhangyuan Tungsten Co Ltd, Ganzhou 341000, Peoples R China
[3] Ganzhou Key Lab Adv Met & Funct Mat, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten oxide; Nitrogen-doped; Carbon layers; Carbon nanotubes; Binder-free anode; WALLED CARBON NANOTUBES; ENERGY-STORAGE; ELECTRODE MATERIALS; WO3; PERFORMANCE; NANOFIBER;
D O I
10.1007/s42864-022-00162-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As the anode active substance of lithium ions battery (LIB), the low conductivity/ion diffusivity and large volume changes of tungsten oxide (WO3) lead to its serious polarization during the lithiation/delithiation process, decreasing the cycling stability. To address these challenges, a binder-free anode consisting of nitrogen-doped tungsten oxide nanosheets, encapsulated in carbon layers (N-doped WO3@CL) and entangled with carbon nanotubes macro-films (CMF), was successfully synthesized through a combination of hydrothermal and online assembly method. Compared with the pristine tungsten oxide entangled with carbon nanotubes macro-films (WO3@CMF), the synthesized N-doped WO3@CL@CMF as a binder-free LIB anode demonstrated better electrochemical performance, which could be attributed to (1) surface defects of WO3 created by N dopant providing more channels to improve Li+ diffusion, (2) the N-doped WO3@CL with a flower-like structure shortening the diffusion length of Li+ ions and further leading to high Li+ incorporation, and (3) carbon layers and carbon nanotubes synergistically alleviating the large volume change of the N-doped WO3@CL@CMF electrode during the charging and discharging process. The present study offers insights into employing nitrogen dopant and a carbon matrix to mediate the conductivity and wrapped structure in the WO3 semiconductor powder, which provides an important strategy for large-scale design of the binder-free LIB anode with high performance.
引用
收藏
页码:356 / 369
页数:14
相关论文
共 42 条
[1]   Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices [J].
Chen, Shaohua ;
Qiu, Ling ;
Cheng, Hui-Ming .
CHEMICAL REVIEWS, 2020, 120 (05) :2811-2878
[2]   Hierarchical Nanostructured WO3 with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage [J].
Chen, Zheng ;
Peng, Yiting ;
Liu, Fang ;
Le, Zaiyuan ;
Zhu, Jian ;
Shen, Gurong ;
Zhang, Dieqing ;
Wen, Meicheng ;
Xiao, Shuning ;
Liu, Chi-Ping ;
Lu, Yunfeng ;
Li, Hexing .
NANO LETTERS, 2015, 15 (10) :6802-6808
[3]   Refilling Nitrogen to Oxygen Vacancies in Ultrafine Tungsten Oxide Clusters for Superior Lithium Storage [J].
Cui, Yanglansen ;
Xiao, Kefeng ;
Bedford, Nicholas M. ;
Lu, Xinxin ;
Yun, Jimmy ;
Amal, Rose ;
Wang, Da-Wei .
ADVANCED ENERGY MATERIALS, 2019, 9 (37)
[4]   Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries [J].
Duan, Xiaochuan ;
Xiao, Songhua ;
Wang, Lingling ;
Huang, Hui ;
Liu, Yuan ;
Li, Qiuhong ;
Wang, Taihong .
NANOSCALE, 2015, 7 (06) :2230-2234
[5]   Niobium tungsten oxides for high-rate lithium-ion energy storage [J].
Griffith, Kent J. ;
Wiaderek, Kamila M. ;
Cibin, Giannantonio ;
Marbella, Lauren E. ;
Grey, Clare P. .
NATURE, 2018, 559 (7715) :556-+
[6]   Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage [J].
Han, Junwei ;
Kong, Debin ;
Lv, Wei ;
Tang, Dai-Ming ;
Han, Daliang ;
Zhang, Chao ;
Liu, Donghai ;
Xiao, Zhichang ;
Zhang, Xinghao ;
Xiao, Jing ;
He, Xinzi ;
Hsia, Feng-Chun ;
Zhang, Chen ;
Tao, Ying ;
Golberg, Dmitri ;
Kang, Feiyu ;
Zhi, Linjie ;
Yang, Quan-Hong .
NATURE COMMUNICATIONS, 2018, 9
[7]   Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications [J].
He, Maoshuai ;
Zhang, Shuchen ;
Zhang, Jin .
CHEMICAL REVIEWS, 2020, 120 (22) :12592-12684
[8]   Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca [J].
He, Yang ;
Gu, Meng ;
Xiao, Haiyan ;
Luo, Langli ;
Shao, Yuyan ;
Gao, Fei ;
Du, Yingge ;
Mao, Scott X. ;
Wang, Chongmin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (21) :6244-6247
[9]   Enhancement of the high-voltage electrochemical performance of an LiNi0.5Co0.2Mn0.3O2 cathode via WO3 coating [J].
He, Yulin ;
Li, Ying ;
Liu, Yaochun ;
Yao, Nianchun ;
Li, Jiamei ;
Liu, Yang .
APPLIED SURFACE SCIENCE, 2020, 508
[10]   Enhanced Coloration Efficiency of Electrochromic Tungsten Oxide Nanorods by Site Selective Occupation of Sodium Ions [J].
Heo, Sungyeon ;
Dahlman, Clayton J. ;
Staller, Corey M. ;
Jiang, Taizhi ;
Dolocan, Andrei ;
Korgel, Brian A. ;
Milliron, Delia J. .
NANO LETTERS, 2020, 20 (03) :2072-2079