Epileptic Seizure Detection

被引:0
|
作者
Nayak, K. P. [1 ]
Niranjan, U. C. [1 ]
机构
[1] Manipal Univ, Dept E&C Engg, MIT, Manipal, India
来源
4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2 | 2008年 / 21卷 / 1-2期
关键词
Electroencephalogram (EEG); Epilepsy; Seizure detection; Classifier; Artificial neural network;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Seizures are the phenomenon of rhythmic discharge from either a local area or the whole brain and the individual behavior usually lasts from seconds to minutes. Since seizures, in general, occur infrequently and unpredictably, automatic detection of seizures during long-term electroencephalograph (EEG) recordings is highly recommended. As EEG signals are non-stationary, the conventional methods of frequency analysis are not successful for diagnostic purposes. This paper presents a method of analysis of EEG signals, which is based on time-frequency analysis. Selected segments of the EEG signals are analyzed using time-frequency methods and the features are extracted for each segment. These features are used as an input to the artificial neural network (ANN), which provides the final classification of the EEG segments concerning the existence of seizures or not. Also, this paper presents another method of analysis of EEG signals based on K-means nearest neighbor classifier and the performance of this classifier is tested on a prior labeled EEG database consisting of normal and epileptic samples. The performance indicates overall accuracy from 84% to 98%.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 50 条
  • [1] PaFESD: Patterns Augmented by Features Epileptic Seizure Detection
    Munoz, Felipe
    Plaza, Rafael Asenjo
    Navarro, Angeles
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2025, 72 (01) : 137 - 151
  • [2] HURST PARAMETER ESTIMATION FOR EPILEPTIC SEIZURE DETECTION
    Osorio, Ivan
    Frei, Mark G.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2007, 7 (02) : 167 - 176
  • [3] Epileptic Seizure Detection and Prediction for Patient Support
    Khan, Gul Hameed
    Khan, Nadeem Ahmad
    Saadeh, Wala
    Bin Altaf, Muahammad Awais
    BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2023, 2024, 2079 : 40 - 59
  • [4] Epileptic Seizure Detection using Micro Sensor
    Tonpe, Snehal V.
    Adhav, Yashwant G.
    Joshi, Atul K.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 660 - 662
  • [5] Detection of Epileptic Seizure Patient
    Pardeshi, K. V.
    Dhulekar, P. A.
    SMART TRENDS IN INFORMATION TECHNOLOGY AND COMPUTER COMMUNICATIONS, SMARTCOM 2016, 2016, 628 : 757 - 767
  • [6] A Machine Learning Application for Epileptic Seizure Detection
    Anugraha, Ayappan
    Vinotha, Elangovan
    Anusha, Rangarajan
    Giridhar, Sadagopan
    Narasimhan, K.
    2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [7] Epileptic Seizure Detection in EEGs Using Time-Frequency Analysis
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Fotiadis, Dimitrios I.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (05): : 703 - 710
  • [8] Epileptic Seizure Detection from Imbalanced EEG signal
    Romaissa, Debeche
    El Habib Daho, Mostafa
    Chikh, Mohammed Amine
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [9] Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction
    Emara H.M.
    Elwekeil M.
    Taha T.E.
    El-Fishawy A.S.
    El-Rabaie E.-S.M.
    El-Shafai W.
    El Banby G.M.
    Alotaiby T.
    Alshebeili S.A.
    Abd El-Samie F.E.
    Annals of Data Science, 2022, 9 (02): : 393 - 428
  • [10] Time Domain Analysis of Epileptic EEG for Seizure Detection
    Tessy, E.
    Muhammed, Shanir P. P.
    Manafuddin, Shaleena
    2016 INTERNATIONAL CONFERENCE ON NEXT GENERATION INTELLIGENT SYSTEMS (ICNGIS), 2016, : 175 - 178