Exact divisibility by powers of the integers in the Lucas sequence of the first kind

被引:6
作者
Onphaeng, Kritkhajohn [1 ]
Pongsriiam, Prapanpong [1 ]
机构
[1] Silpakorn Univ, Fac Sci, Dept Math, Muang 73000, Nakhon Pathom, Thailand
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
Lucas sequence; Lucas number; Fibonacci number; exact divisibility; p-adic valuation; P-ADIC VALUATION; ARITHMETIC FUNCTIONS; FIBONACCI; NUMBERS; APPEARANCE; ORDER; SUBSEQUENCES; PRODUCTS;
D O I
10.3934/math.2020433
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lucas sequence of the first kind is an integer sequence (U-n)(n >= 0) which depends on parameters a, b is an element of Z and is defined by the recurrence relation U-0 = 0, U-1 = 1, and U-n = aU(n-1) + bU(n-2) for n >= 2. In this article, we obtain exact divisibility results concerning U-n(k) for all positive integers n and k. This extends many results in the literature from 1970 to 2020 which dealt only with the classical Fibonacci and Lucas numbers (a = b = 1) and the balancing and Lucas-balancing numbers (a = 6, b = -1).
引用
收藏
页码:6739 / 6748
页数:10
相关论文
共 29 条
  • [1] Benjamin A., 2003, P 11 INT C FIB NUMB, V194, P53
  • [2] DIVISIBILITY PROPERTIES OF THE FIBONACCI ENTRY POINT
    Cubre, Paul
    Rouse, Jeremy
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3771 - 3785
  • [3] HOGGATT VE, 1977, FIBONACCI QUART, V15, P3
  • [4] Jaidee M, 2019, FIBONACCI QUART, V57, P246
  • [5] Khaochim N, 2018, ACTA MATH UNIV COMEN, V87, P277
  • [6] Khaochim N, 2018, CONTRIB DISCRET MATH, V13, P45
  • [7] Matijasevic Y. V., 1970, SOV MATH DOKL, V11, P354
  • [8] MY COLLABORATION WITH ROBINSON,JULIA
    MATIJASEVICH, Y
    [J]. MATHEMATICAL INTELLIGENCER, 1992, 14 (04) : 38 - 45
  • [9] Matijasevich Y., 1996, HILBERTS 10 PROBLEM
  • [10] Onphaeng K, 2018, FIBONACCI QUART, V56, P296