Nanorheological Mapping of Rubbers by Atomic Force Microscopy

被引:53
|
作者
Igarashi, Takaaki [1 ,2 ,3 ]
Fujinami, So [2 ]
Nishi, Toshio [4 ]
Asao, Naoki [2 ,3 ]
Nakajima, Ken [2 ]
机构
[1] Bridgestone Corp, Tokyo, Japan
[2] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 980, Japan
[3] Tohoku Univ, Dept Chem, Grad Sch Sci, Sendai, Miyagi 980, Japan
[4] Tokyo Inst Technol, Int Div, Tokyo 152, Japan
关键词
ELASTIC-MODULUS; CONTACT; MODULATION; MORPHOLOGY; FRICTION; SURFACES; BLENDS; TIPS;
D O I
10.1021/ma302616a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel atomic force microscopy (AFM) method is used for nanometer-scale mapping of the frequency dependence of the storage modulus, loss modulus, and loss tangent (tan delta) in rubber specimens. Our method includes a modified AFM instrument, which has an additional piezoelectric actuator placed between the specimen and AFM scanner. The specimen and AFM cantilever are oscillated by this actuator with a frequency between 1 Hz and 20 kHz. On the basis of contact mechanics between the probe and the sample, the viscoelastic properties were determined from the amplitude and phase shift of the cantilever oscillation. The values of the storage and loss moduli using our method are similar to those using bulk dynamic mechanical analysis (DMA) measurements. Moreover, the peak frequency of tan delta corresponds to that of bulk DMA measurements.
引用
收藏
页码:1916 / 1922
页数:7
相关论文
共 50 条
  • [41] The evaluation of nanotribological property of nano thin film under different environment by atomic force microscopy
    Huang, Jen-Ching
    Cheng, Fu-Jen
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2016, 22 (10): : 2595 - 2600
  • [42] Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips
    Gross, Leo
    Schuler, Bruno
    Mohn, Fabian
    Moll, Nikolaj
    Pavlicek, Niko
    Steurer, Wolfram
    Scivetti, Ivan
    Kotsis, Konstantinos
    Persson, Mats
    Meyer, Gerhard
    PHYSICAL REVIEW B, 2014, 90 (15):
  • [43] Shale adhesion force measurements via atomic force microscopy
    Mitiurev, Nikolai
    Verrall, Michael
    Shilobreeva, Svetlana
    Keshavarz, Alireza
    Iglauer, Stefan
    OIL AND GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2021, 76 (20):
  • [44] Traceable Lateral Force Calibration (TLFC) for Atomic Force Microscopy
    Arnab Bhattacharjee
    Nikolay T. Garabedian
    Christopher L. Evans
    David L. Burris
    Tribology Letters, 2020, 68
  • [45] Traceable Lateral Force Calibration (TLFC) for Atomic Force Microscopy
    Bhattacharjee, Arnab
    Garabedian, Nikolay T.
    Evans, Christopher L.
    Burris, David L.
    TRIBOLOGY LETTERS, 2020, 68 (04)
  • [46] Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy
    Fukuma, Takeshi
    Garcia, Ricardo
    ACS NANO, 2018, 12 (12) : 11785 - 11797
  • [47] Observation of Polylactide Stereocomplex by Atomic Force Microscopy
    Fujishiro, Shinya
    Minamino, Daiki
    Obataya, Ikuo
    Saitoh, Nobuhiro
    Hosokawa, Yoichiroh
    Ajiro, Hiroharu
    CHEMISTRY LETTERS, 2018, 47 (01) : 82 - 84
  • [48] Intermittent contact resonance atomic force microscopy
    Stan, Gheorghe
    Gates, Richard S.
    NANOTECHNOLOGY, 2014, 25 (24)
  • [49] Atomic Defect Quantification by Lateral Force Microscopy
    Yang, Yucheng
    Xu, Kaikui
    Holtzman, Luke N.
    Yang, Kristyna
    Watanabe, Kenji
    Taniguchi, Takashi
    Hone, James
    Barmak, Katayun
    Rosenberger, Matthew R.
    ACS NANO, 2024, 18 (09) : 6887 - 6895
  • [50] Atomic force microscopy of biomaterials surfaces and interfaces
    Jandt, KD
    SURFACE SCIENCE, 2001, 491 (03) : 303 - 332