Nonlinearity Activated Noise-Tolerant Zeroing Neural Network for Real-Time Varying Matrix Inversion

被引:0
|
作者
Duan, Wenhui [1 ,2 ]
Jin, Long [1 ,2 ]
Hu, Bin [1 ]
Lu, Huiyan [1 ,2 ]
Liu, Mei [1 ,2 ]
Li, Kene [3 ]
Xiao, Lin [4 ]
Yi, Chenfu [5 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[2] Southwest Univ Sci & Technol, Key Lab Robot Technol Used Special Environm, Key Lab Sichuan Prov, Mianyang 621000, Peoples R China
[3] Guangxi Univ Sci & Technol, Sch Elect & Informat Engn, Liuzhou 545006, Peoples R China
[4] Jishou Univ, Coll Informat Sci & Engn, Jishou 416000, Peoples R China
[5] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou 341000, Peoples R China
基金
湖南省自然科学基金; 中国国家自然科学基金;
关键词
Nonlinearity activated noise-tolerant zeroing neural network (NANTZNN); Real-time varying matrix inversion; Noise environment; Bounded random noise; Computer simulation verification; MODELS; OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time varying matrix inversion is widely used in the fields of science and engineering, e.g., image processing, signal processing and robot technology, etc. In this paper, a nonlinearity activated noise-tolerant zeroing neural network (NANTZNN) is constructed and employed to the time-dependent matrix inversion in the noisy environment. Compared with the gradient approach related neural network (GNN) and the existing noise-tolerant zeroing neural network (NTZNN), the proposed NANTZNN model is activated by specially-constructed nonlinear activation functions, and thus possesses the better convergence performance. Additionally, theoretical analyses are provided to guarantee the convergence of the proposed model. Finally, simulations are conducted to demonstrate the efficiency and superiority of the NANTZNN model for time-dependent matrix inversion, as compared with the NTZNN model.
引用
收藏
页码:3117 / 3122
页数:6
相关论文
共 50 条
  • [31] A new noise-tolerant and predefined-time ZNN model for time-dependent matrix inversion
    Xiao, Lin
    Zhang, Yongsheng
    Dai, Jianhua
    Chen, Ke
    Yang, Song
    Li, Weibing
    Liao, Bolin
    Ding, Lei
    Li, Jichun
    NEURAL NETWORKS, 2019, 117 : 124 - 134
  • [32] A Fuzzy Adaptive Zeroing Neural Network Model With Event-Triggered Control for Time-Varying Matrix Inversion
    Dai, Jianhua
    Tan, Ping
    Xiao, Lin
    Jia, Lei
    He, Yongjun
    Luo, Jiajie
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (11) : 3974 - 3983
  • [33] New Noise-Tolerant Neural Algorithms for Future Dynamic Nonlinear Optimization With Estimation on Hessian Matrix Inversion
    Wei, Lin
    Jin, Long
    Yang, Chenguang
    Chen, Ke
    Li, Weibing
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (04): : 2611 - 2623
  • [34] A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation
    Li, Xiaoxiao
    Yu, Jiguo
    Li, Shuai
    Ni, Lina
    NEUROCOMPUTING, 2018, 317 : 70 - 78
  • [35] A novel extended Li zeroing neural network for matrix inversion
    Gerontitis, Dimitrios
    Mo, Changxin
    Stanimirovic, Predrag S.
    Tzekis, Panagiotis
    Katsikis, Vasilios N.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (19): : 14129 - 14152
  • [36] Zeroing neural network for time-varying convex quadratic programming with linear noise
    Li J.
    Liu Z.
    Rong Y.
    Li Z.
    Liao B.
    Qu L.
    Liu Z.
    Lin K.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (04): : 226 - 233
  • [37] A novel extended Li zeroing neural network for matrix inversion
    Dimitrios Gerontitis
    Changxin Mo
    Predrag S. Stanimirović
    Panagiotis Tzekis
    Vasilios N. Katsikis
    Neural Computing and Applications, 2023, 35 : 14129 - 14152
  • [38] A Robust Predefined-Time Convergence Zeroing Neural Network for Dynamic Matrix Inversion
    Jin, Jie
    Zhu, Jingcan
    Zhao, Lv
    Chen, Lei
    Chen, Long
    Gong, Jianqiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (06) : 3887 - 3900
  • [39] Double integral-enhanced Zeroing neural network with linear noise rejection for time-varying matrix inverse
    Liao, Bolin
    Han, Luyang
    Cao, Xinwei
    Li, Shuai
    Li, Jianfeng
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (01) : 197 - 210
  • [40] Noise-tolerant continuous-time Zhang neural networks for time-varying Sylvester tensor equations
    Min, Sun
    Jing, Liu
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)