Large-scale real-world radio signal recognition with deep learning

被引:172
作者
Tu, Ya [1 ]
Lin, Yun [1 ]
Zha, Haoran [1 ]
Zhang, Ju [2 ]
Wang, Yu [3 ]
Gui, Guan [3 ]
Mao, Shiwen [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha 410073, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[4] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
基金
中国国家自然科学基金;
关键词
Signal recognition; Radio signal dataset; Automatic Dependent Surveillance-Broadcast (ADS-B); Deep learning; Recognition benchmark; AUTOMATIC MODULATION CLASSIFICATION; NETWORKS;
D O I
10.1016/j.cja.2021.08.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In the past ten years, many high-quality datasets have been released to support the rapid development of deep learning in the fields of computer vision, voice, and natural language processing. Nowadays, deep learning has become a key research component of the Sixth-Generation wireless systems (6G) with numerous regulatory and defense applications. In order to facilitate the application of deep learning in radio signal recognition, in this work, a large-scale real-world radio signal dataset is created based on a special aeronautical monitoring system - Automatic Dependent Surveillance-Broadcast (ADS-B). This paper makes two main contributions. First, an automatic data collection and labeling system is designed to capture over-the-air ADS-B signals in the open and real-world scenario without human participation. Through data cleaning and sorting, a high-quality dataset of ADS-B signals is created for radio signal recognition. Second, we conduct an in-depth study on the performance of deep learning models using the new dataset, as well as comparison with a recognition benchmark using machine learning and deep learning methods. Finally, we conclude this paper with a discussion of open problems in this area. (C) 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 31 条
[31]   Automatic Modulation Classification Using CNN-LSTM Based Dual-Stream Structure [J].
Zhang, Zufan ;
Luo, Hao ;
Wang, Chun ;
Gan, Chenquan ;
Xiang, Yong .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) :13521-13531