共 50 条
A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries
被引:83
|作者:
Zhang, Dechao
[1
]
Xu, Xijun
[1
]
Huang, Xinyue
[2
]
Shi, Zhicong
[2
]
Wang, Zhuosen
[1
]
Liu, Zhengbo
[1
]
Hu, Renzong
[1
]
Liu, Jun
[1
]
Zhu, Min
[1
]
机构:
[1] South China Univ Technol, Guangdong Prov Key Lab Adv Energy Storage Mat, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Guangdong Engn Technol Res Ctr New Energy Mat & D, Sch Mat & Energy, Guangzhou 510006, Peoples R China
基金:
中国国家自然科学基金;
关键词:
HIGH IONIC-CONDUCTIVITY;
POLYMER ELECTROLYTE;
LIQUID;
SPECTROSCOPY;
STABILITY;
TRANSPORT;
D O I:
10.1039/d0ta06697d
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Composite solid-state electrolytes (CSEs) that integrate the merits of different components are considered to be promising candidates for next-generation high-energy density lithium metal batteries. Herein, we have successfully designed a flexible CSE membrane consisting of the ceramic conducting Li1.3Al0.3Ti1.7(PO4)(3)(LATP) filler, polyethylene oxide (PEO) matrix, and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid. In particular, the addition of ionic liquid (BMP-TFSI) can not only decrease the interface impedance between the polymer and LATP ceramic fillers and improve the ionic conductivity, but also prevent the adverse reaction between Ti(4+)in LATP and Li metal and further enhance the interface stability. Benefitting from the synergistic effect of organic-inorganic hybrids, the obtained composite electrolyte membrane achieves an excellent ionic conductivity of 2.42 x 10(-4)S cm(-1)at 30 degrees C and a wide electrochemical stability window of 5 V (vs.Li+/Li). Moreover, the CSE membrane exhibits outstanding Li dendrite suppression capability, which is proved by galvanostatic Li plating/stripping tests for 1000 h. Assembled with this solid electrolyte membrane and a commercial LiFePO(4)cathode, all-solid-state lithium metal batteries demonstrate superior rate capability and outstanding cycling stability at both 30 and 45 degrees C. These results demonstrate that such a flexible composite electrolyte is a promising alternative electrolyte for practical high-energy density all-solid-state batteries.
引用
收藏
页码:18043 / 18054
页数:12
相关论文