Interaction of solitons in one-dimensional dipolar Bose-Einstein condensates and formation of soliton molecules

被引:32
作者
Baizakov, B. B. [1 ]
Al-Marzoug, S. M. [2 ,3 ]
Bahlouli, H. [2 ,3 ]
机构
[1] Uzbek Acad Sci, Phys Tech Inst, Tashkent 100084, Uzbekistan
[2] King Fahd Univ Petr & Minerals, Dept Phys, Dhahran 31261, Saudi Arabia
[3] Saudi Ctr Theoret Phys, Dhahran 31261, Saudi Arabia
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 03期
关键词
LONG-RANGE INTERACTIONS; INTERACTION FORCES; OPTIMIZATION; DARK;
D O I
10.1103/PhysRevA.92.033605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interaction between two bright solitons in a one-dimensional dipolar Bose-Einstein condensate (BEC) is investigated, with the aim of finding the regimes where they form a stable bound state, known as the soliton molecule. To study soliton interactions in BECs we employed a method similar to that used in experimental investigation of the interaction between solitons in optical fibers. The idea consists in creating two solitons at some spatial separation from each other at initial time t(0) and then measuring the distance between them at a later time t(1) > t(0). Depending on whether the distance between solitons has increased, decreased, or remained unchanged, compared to its initial value at t(0), we conclude that the soliton interaction was repulsive, attractive, or neutral, respectively. We propose an experimentally viable method for estimating the binding energy of a soliton molecule, based on its dissociation at critical soliton velocity. Our theoretical analysis is based on the variational approach, which appears to be quite accurate in describing the properties of soliton molecules in dipolar BECs, as reflected in the good agreement between the analytical and the numerical results.
引用
收藏
页数:7
相关论文
共 55 条
  • [1] Solitons in dipolar Bose-Einstein condensates with a trap and barrier potential
    Abdullaev, F. Kh
    Brazhnyi, V. A.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (08)
  • [2] Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
  • [3] Reaching Fermi Degeneracy via Universal Dipolar Scattering
    Aikawa, K.
    Frisch, A.
    Mark, M.
    Baier, S.
    Grimm, R.
    Ferlaino, F.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (01)
  • [4] Bose-Einstein Condensation of Erbium
    Aikawa, K.
    Frisch, A.
    Mark, M.
    Baier, S.
    Rietzler, A.
    Grimm, R.
    Ferlaino, F.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [5] Bright soliton trains of trapped Bose-Einstein condensates
    Al Khawaja, U
    Stoof, HTC
    Hulet, RG
    Strecker, KE
    Partridge, GB
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (20)
  • [6] Luus-Jaakola optimization procedure for multilayer optical coatings
    Al-Marzoug, S. M.
    Hodgson, R. J. W.
    [J]. OPTICS COMMUNICATIONS, 2006, 265 (01) : 234 - 240
  • [7] Averaged dynamics of soliton molecules in dispersion-managed optical fibers
    Alamoudi, S. M.
    Al Khawaja, U.
    Baizakov, B. B.
    [J]. PHYSICAL REVIEW A, 2014, 89 (05):
  • [8] Nonlinear atom optics
    Anderson, B
    Meystre, P
    [J]. CONTEMPORARY PHYSICS, 2003, 44 (06) : 473 - 483
  • [9] Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates
    Becker, Christoph
    Stellmer, Simon
    Soltan-Panahi, Parvis
    Doerscher, Soeren
    Baumert, Mathis
    Richter, Eva-Maria
    Kronjaeger, Jochen
    Bongs, Kai
    Sengstock, Klaus
    [J]. NATURE PHYSICS, 2008, 4 (06) : 496 - 501
  • [10] Integrated Mach-Zehnder interferometer for Bose-Einstein condensates
    Berrada, T.
    van Frank, S.
    Buecker, R.
    Schumm, T.
    Schaff, J. -F.
    Schmiedmayer, J.
    [J]. NATURE COMMUNICATIONS, 2013, 4