Surface Plasmon Resonance Biosensor Performance Analysis on 2D Material Based on Graphene and Transition Metal Dichalcogenides

被引:52
|
作者
Nurrohman, Devi Taufiq [1 ,2 ]
Chiu, Nan-Fu [1 ,3 ]
机构
[1] Natl Taiwan Normal Univ, Inst Electroopt Engn, Lab Nanophoton & Biosensors, Taipei, Taiwan
[2] Politekn Negeri Cilacap, Dept Elect Engn, Kabupaten Cilacap, Jawa Tengah, Indonesia
[3] Natl Taiwan Normal Univ, Dept Life Sci, Taipei, Taiwan
关键词
SENSITIVITY ENHANCEMENT; SPR SENSOR; ROUGHNESS; OXIDE;
D O I
10.1149/2162-8777/abb419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since graphene was first isolated in 2004, research related to graphene-based 2D material for surface plasmon resonance (SPR) biosensor applications has increased. Recently, other types of 2D materials such as Transition Metal Dichalcogenides have also been investigated. This 2D material has exceptional optical and electronic properties and can be utilized to improve the performance of biosensors. The performance of SPR biosensors can be determined based on their sensitivity and detection accuracy (DA). To find out the sensitivity and DA, simulation approach can be done. In this paper, we perform SPR simulations on monolayer and multilayer structures of 2D material, namely graphene, graphene oxide, molibdenum disulfida, and tungsten diselenide. In addition, we also investigated the sensitivity and DA of SPR biosensors on hybrid structures. The results obtained indicate that the use of 2D material can increase the sensitivity of the SPR up to 5 times when compared to conventional structures. Of the four types of 2D material investigated, GO is the material with the best accuracy. If the SPR biosensor performance is determined based on the FOM value, the best performance is owned by the GO-based SPR structure with a sensitivity of 151.87 deg/RIU and DA 0.22 deg-1. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection
    Panda, Abinash
    Pukhrambam, Puspa Devi
    Keiser, Gerd
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (03):
  • [22] Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection
    Abinash Panda
    Puspa Devi Pukhrambam
    Gerd Keiser
    Applied Physics A, 2020, 126
  • [23] Graphene-MoS2 Heterostructure Based Surface Plasmon Resonance Biosensor
    Aksimsek, Sinan
    Sun, Zhipei
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 180 - 181
  • [24] Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon
    Maurya, J. B.
    Prajapati, Y. K.
    Singh, V.
    Saini, J. P.
    Tripathi, Rajeev
    OPTICS COMMUNICATIONS, 2016, 359 : 426 - 434
  • [25] Surface plasmon resonance biosensor based on graphene and grating excitation
    Tong, Kai
    Wang, Yunxuan
    Wang, Fucheng
    Sun, Jiaru
    Wu, Xiaogang
    APPLIED OPTICS, 2019, 58 (07) : 1824 - 1829
  • [26] SURFACE PLASMON RESONANCE IMAGING BIOSENSOR BASED ON GRAPHENE MULTILAYER
    Maharana, Pradeep Kumar
    Srivastava, Triranjita
    Jha, Rajan
    2012 INTERNATIONAL CONFERENCE ON FIBER OPTICS AND PHOTONICS (PHOTONICS), 2012,
  • [27] Sensitivity Analysis of a Graphene based Surface Plasmon Resonance Biosensor in Terms of Number of Graphene Layers
    Bari, Md. Mushfequl
    Sarkar, Ajay Krishna
    Hossain, Sakhawat
    2016 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER & TELECOMMUNICATION ENGINEERING (ICECTE), 2016,
  • [28] Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides
    Wang, Junyong
    Verzhbitskiy, Ivan
    Eda, Goki
    ADVANCED MATERIALS, 2018, 30 (47)
  • [29] Tuning the surface and phase of 2D transition metal dichalcogenides for hydrogen generation
    Miller, Elisa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [30] Longitudinal unzipping of 2D transition metal dichalcogenides
    Suchithra Padmajan Sasikala
    Yashpal Singh
    Li Bing
    Taeyoung Yun
    Sung Hwan Koo
    Yousung Jung
    Sang Ouk Kim
    Nature Communications, 11