Forecasting the exchange rate using the improved SAPSO neural network

被引:1
作者
Meng Li [1 ]
Dong Lijun [1 ]
机构
[1] Xiamen Univ, Sch Management, Xiamen 361005, Peoples R China
来源
AUTOMATION EQUIPMENT AND SYSTEMS, PTS 1-4 | 2012年 / 468-471卷
关键词
simulated annealing particle swarm optimization; PSO; simulated annealing; exchange rate forecasts;
D O I
10.4028/www.scientific.net/AMR.468-471.1714
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper researches on the behavior of particles in the PSO, and improves the situation of easily falling into local optimum by the right combination of simulated annealing and PSO. In the paper, the author compared the original PSO and the improved SAPSO algorithms in neural network training. The empirical research shows that the improved algorithm performed better than the PSO algorithm in global search ability, and the prediction accuracy is greatly increased.
引用
收藏
页码:1714 / 1720
页数:7
相关论文
共 10 条
[1]  
Jerry Coakley, 2001, APPL FINANCIAL EC, P1
[2]  
Li M., 2009, INT S INT INF SYST A
[3]  
Li Xuewen, 2011, J QINDAO U SCI TECHN, V2
[4]  
Liu Hongbo, 2005, MINITYPE COMPUTER SY
[5]  
Meng Li, 2011, TECHNOLOGY MANAGEMEN, P67
[6]  
POLASEK W, 1999, MULTIVARIATE GARCH M
[7]   A global Particle Swarm-Based-Simulated Annealing Optimization technique for under-voltage load shedding problem [J].
Sadati, N. ;
Amraee, Turaj ;
Ranjbar, A. M. .
APPLIED SOFT COMPUTING, 2009, 9 (02) :652-657
[8]  
SHI Y, 1998, IEEE INT C EV COMP A
[9]  
Wang Suihua, 2003, COMPUTER APPL SOFTWA
[10]   Forecasting with artificial neural networks: The state of the art [J].
Zhang, GQ ;
Patuwo, BE ;
Hu, MY .
INTERNATIONAL JOURNAL OF FORECASTING, 1998, 14 (01) :35-62