Fast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery

被引:17
作者
Hwang, Chahwan [1 ]
Kim, Taejin [2 ]
Shim, Joongpyo [3 ]
Kwak, Kyungwon [1 ]
Ok, Kang Min [1 ]
Lee, Kyung-Koo [2 ]
机构
[1] Chung Ang Univ, Dept Chem, Seoul 156756, South Korea
[2] Kunsan Natl Univ, Dept Chem, Gunsan 573701, Jeonbuk, South Korea
[3] Kunsan Natl Univ, Dept Nano & Chem Engn, Gunsan 573701, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Cathode active material; Lithium manganese silicate; Sonochemical reaction; Sol-gel process; CARBON-COATED LI2MNSIO4; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; PARTICLE-SIZE; SOLVOTHERMAL SYNTHESIS; TIO2; NANOPARTICLES; COLLAPSING BUBBLE; NANOCOMPOSITE; LIFEPO4; STORAGE;
D O I
10.1016/j.jpowsour.2015.06.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity Li2MnSiO4/C (LMS/C MBS) nanoparticles have been prepared using sonochemistry under a multibubble sonoluminescence (MBS) condition, and their physical and electrochemical properties were characterized. The results show that LMS/C MBS nanoparticles exhibit a nearly pure crystalline phase with orthorhombic structure and have a spherical shape and a uniform particle size distribution centered at a diameter of 22.5 nm. Galvanostatic charge-discharge measurements reveal that LMS/C MBS delivers an initial discharge capacity of about 260 mA h g(-1) at a current rate of 16.5 mA g(-1) in the voltage range of 1.5-4.8 V (vs. Li/Li+), while LMS MBS (LMS without a carbon source under MBS) and LMS/C SG (LMS with a carbon source using the conventional sal-gel method) possess lower capacities of 168 and 9 mA h g(-1) respectively. The improved electrochemical performance of LMS/C MBS can be ascribed to the uniform nanoparticle size, mesoporous structure, and in-situ carbon coating, which can enhance the electronic conductivity as well as the lithium ion diffusion coefficient. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:522 / 529
页数:8
相关论文
共 57 条
[1]   Superior Lithium Storage Properties of Carbon Coated Li2MnSiO4 Cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Amaresh, S. ;
Lee, Y. S. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (04) :A33-A35
[2]   Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Kang, K. S. ;
Yoon, W. S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) :2470-2475
[3]   Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties [J].
Aravindan, V. ;
Karthikeyan, K. ;
Ravi, S. ;
Amaresh, S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7340-7343
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J].
Arroyo-deDompablo, M. E. ;
Dominko, R. ;
Gallardo-Amores, J. M. ;
Dupont, L. ;
Mali, G. ;
Ehrenberg, H. ;
Jamnik, J. ;
Moran, E. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5574-5584
[6]   Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries [J].
Aurbach, D ;
Nimberger, A ;
Markovsky, B ;
Levi, E ;
Sominski, E ;
Gedanken, A .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4155-4163
[7]   Applications of Ultrasound to the Synthesis of Nanostructured Materials [J].
Bang, Jin Ho ;
Suslick, Kenneth S. .
ADVANCED MATERIALS, 2010, 22 (10) :1039-1059
[8]   Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material [J].
Belharouak, Ilias ;
Abouimrane, A. ;
Amine, K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20733-20737
[9]   Syntheses of ZnO and ZnO-coated TiO2 nanoparticles in various alcohol solutions at multibubble sonoluminescence (MBSL) condition [J].
Byun, Ki-Taek ;
Seo, Kook Won ;
Shim, Il-Wun ;
Kwak, Ho-Young .
CHEMICAL ENGINEERING JOURNAL, 2008, 135 (03) :168-173
[10]   Characterization of Li2MnSiO4 and Li2eSiO4 cathode materials synthesized via a citric acid assisted sol-gel method [J].
Deng, C. ;
Zhang, S. ;
Fu, B. L. ;
Yang, S. Y. ;
Ma, L. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 120 (01) :14-17