Synchronous dynamics in the presence of short-term plasticity

被引:15
|
作者
di Volo, Matteo [1 ,2 ]
Livi, Roberto [2 ,3 ,4 ,5 ]
Luccioli, Stefano [2 ,4 ,5 ]
Politi, Antonio [2 ,4 ,6 ,7 ]
Torcini, Alessandro [2 ,4 ,5 ]
机构
[1] Univ Parma, Dept Phys, I-43124 Parma, Italy
[2] Univ Florence, Ctr Interdipartimentale Studio Dinam Complesse, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, Dept Phys, I-50019 Sesto Fiorentino, Italy
[4] CNR, Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Italy
[5] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[6] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[7] Univ Aberdeen, Scottish Univ Phys Alliance, Aberdeen AB24 3UE, Scotland
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
SYNCHRONIZATION; NETWORKS;
D O I
10.1103/PhysRevE.87.032801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the occurrence of quasisynchronous events in a random network of excitatory leaky integrate-and-fire neurons equipped with short-term plasticity. The dynamics is analyzed by monitoring both the evolution of global synaptic variables and, on a microscopic ground, the interspike intervals of the individual neurons. We find that quasisynchronous events are the result of a mixture of synchronized and unsynchronized motion, analogously to the emergence of synchronization in the Kuramoto model. In the present context, disorder is due to the random structure of the network and thereby vanishes for a diverging network size N (i.e., in the thermodynamic limit), when statistical fluctuations become negligible. Remarkably, the fraction of asynchronous neurons remains strictly larger than zero for arbitrarily large N. This is due to the presence of a robust homoclinic cycle in the self-generated synchronous dynamics. The nontrivial large-N behavior is confirmed by the anomalous scaling of the maximum Lyapunov exponent, which is strictly positive in a finite network and decreases as N-0.27. Finally, we have checked the robustness of this dynamical phase with respect to the addition of noise, applied to either the reset potential or the leaky current. DOI: 10.1103/PhysRevE.87.032801
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dynamics of electrosensory feedback: Short-term plasticity and inhibition in a parallel fiber pathway
    Lewis, JE
    Maler, L
    JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (04) : 1695 - 1706
  • [22] Short-term plasticity in the spinal nociceptive system
    Cathenaut, Lou
    Schlichter, Remy
    Hugel, Sylvain
    PAIN, 2023, 164 (11) : 2411 - 2424
  • [23] Limits on short-term plasticity in somatosensory cortex
    Calford, MB
    SOMATOSENSORY PROCESSING: FROM SINGLE NEURON TO BRAIN IMAGING, 2001, : 153 - 166
  • [24] Short-term synaptic plasticity and intensity coding
    MacLeod, Katrina M.
    HEARING RESEARCH, 2011, 279 (1-2) : 13 - 21
  • [25] Roles for short-term synaptic plasticity in behavior
    Fortune, ES
    Rose, GJ
    JOURNAL OF PHYSIOLOGY-PARIS, 2002, 96 (5-6) : 539 - 545
  • [26] Very short-term plasticity in hippocampal synapses
    Dobrunz, LE
    Huang, EP
    Stevens, CF
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) : 14843 - 14847
  • [27] Short-term plasticity in the human visual thalamus
    Kurzawski, Jan W.
    Lunghi, Claudia
    Biagi, Laura
    Tosetti, Michela
    Morrone, Maria Concetta
    Binda, Paola
    ELIFE, 2022, 11
  • [28] Structural contributions to short-term synaptic plasticity
    Xu-Friedman, MA
    Regehr, WG
    PHYSIOLOGICAL REVIEWS, 2004, 84 (01) : 69 - 85
  • [29] Plasticity During Short-Term Visual Deprivation
    Brodoehl, Stefan
    Klingner, Carsten
    Schaller, Denise
    Witte, Otto W.
    ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY, 2016, 224 (02): : 125 - 132
  • [30] Short-term synaptic plasticity and network behavior
    Kistler, WM
    van Hemmen, JL
    NEURAL COMPUTATION, 1999, 11 (07) : 1579 - 1594