NONLINEAR SCHRODINGER EQUATION AND FREQUENCY SATURATION

被引:0
|
作者
Carles, Remi [1 ,2 ]
机构
[1] CNRS, CC051,Pl Eugene Bataillon, F-34095 Montpellier, France
[2] Univ Montpellier 2, UMR 5149, F-34095 Montpellier, France
来源
ANALYSIS & PDE | 2012年 / 5卷 / 05期
关键词
nonlinear Schrodinger equation; well-posedness; approximation; DATA CAUCHY-THEORY; GEOMETRIC OPTICS; ILL-POSEDNESS; APPROXIMATION; INSTABILITY; REGULARITY;
D O I
10.2140/apde.2012.5.1157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an approach that permits to avoid instability phenomena for the nonlinear Schrodinger equations. We show that by approximating the solution in a suitable way, relying on a frequency cut-off, global well-posedness is obtained in any Sobolev space with nonnegative regularity. The error between the exact solution and its approximation can be measured according to the regularity of the exact solution, with different accuracy according to the cases considered.
引用
收藏
页码:1157 / 1173
页数:17
相关论文
共 50 条
  • [31] Orbital stability of periodic waves for the nonlinear Schrodinger equation
    Gallay, Thierry
    Haragus, Mariana
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (04) : 825 - 865
  • [32] Justification of the nonlinear Schrodinger equation for a resonant Boussinesq model
    Duell, Wolf-Patrick
    Schneider, Guido
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (06) : 1813 - 1834
  • [33] Open boundaries for the nonlinear Schrodinger equation
    Soffer, A.
    Stucchio, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1218 - 1232
  • [34] Envelope solutions to nonlinear Schrodinger equation
    Li, XZ
    Zhang, JL
    Wang, YM
    Wang, ML
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4045 - 4051
  • [35] Geometric integrators for the nonlinear Schrodinger equation
    Islas, AL
    Karpeev, DA
    Schober, CM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (01) : 116 - 148
  • [36] Solution of the nonlinear Schrodinger equation (1
    Segovia Chaves, Francis
    Cabrera, Emilse
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2015, 6 (02): : 26 - 32
  • [37] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [38] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [39] Nonlinear Schrodinger Equation and the Hyperbolization Method
    Yunakovsky, A. D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (07) : 1112 - 1130
  • [40] A relaxation scheme for the nonlinear Schrodinger equation
    Besse, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 934 - 952