ON A ONE-PHASE FREE BOUNDARY PROBLEM

被引:0
|
作者
Avelin, Benny [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
One-phase; free boundary; NTA; non-divergence; linear; DOMAINS;
D O I
10.5186/aasfm.2013.3815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend a result regarding the free boundary regularity in a one-phase problem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order. Roughly speaking we prove that the free boundary is given by a Lipschitz graph.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 50 条
  • [31] The asymptotic behavior for the one-phase Stefan problem with a convective boundary condition
    Dpto. Mat., FCE, Univ. Austral, Paraguay 1950, Rosario, Argentina
    不详
    Appl Math Lett, 3 (21-24):
  • [32] The asymptotic behavior for the one-phase Stefan problem with a convective boundary condition
    Tarzia, DA
    Turner, CV
    APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 21 - 24
  • [33] ANALYTICAL INVESTIGATION OF THE ONE-PHASE STEFAN PROBLEM WITH A CONVECTIVE BOUNDARY CONDITION
    Darkhoshi, Ghader
    Ivaz, Karim
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 158 - 160
  • [34] ONE-PHASE STEFAN PROBLEM FOR HEAT EQUATION WITH BOUNDARY TEMPERATURE SPECIFICATION
    CANNON, JR
    HILL, CD
    PRIMICERIO, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1970, 39 (04) : 270 - +
  • [35] GLOBAL LIPSCHITZ CONTINUITY OF FREE BOUNDARIES IN THE ONE-PHASE STEFAN PROBLEM
    YAZHE, C
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1985, 142 : 197 - 213
  • [36] A ONE-PHASE PROBLEM FOR THE FRACTIONAL LAPLACIAN: REGULARITY OF FLAT FREE BOUNDARIES
    De Silva, D.
    Savin, O.
    Sire, Y.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (01): : 111 - 145
  • [37] ON REARRANGEMENT IN ONE-PHASE STEFAN PROBLEM
    NABOKOV, RY
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (02): : 59 - 61
  • [38] A one-phase inverse Stefan problem
    El Badia, A
    Moutazaim, F
    INVERSE PROBLEMS, 1999, 15 (06) : 1507 - 1522
  • [39] ONE-PHASE QUASILINEAR STEFAN PROBLEM
    BORODIN, MA
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02): : 99 - 101
  • [40] FUZZY ONE-PHASE STEFAN PROBLEM
    Ivaz, K.
    Fazlallahi, M. Asadpour
    Khastan, A.
    Nieto, J. J.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 66 - 79