On convergence of the penalty method for unilateral contact problems

被引:48
作者
Chouly, Franz [1 ]
Hild, Patrick [2 ]
机构
[1] Univ Franche Comte, UMR CNRS 6623, Lab Math Besancon, F-25030 Besancon, France
[2] Univ Paul Sabatier UT3, UMR CNRS INSAT UT1 UT2 UT3 5219, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
Unilateral contact; Tresca friction; Variational inequality; Finite elements; Penalty method; A priori error estimates; FINITE-ELEMENT APPROXIMATIONS; PRIORI ERROR ESTIMATE; SIGNORINI PROBLEM; STABILITY;
D O I
10.1016/j.apnum.2012.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a convergence analysis of the penalty method applied to unilateral contact problems in two and three space dimensions. We first consider, under various regularity assumptions on the exact solution to the unilateral contact problem, the convergence of the continuous penalty solution as the penalty parameter epsilon vanishes. Then, the analysis of the finite element discretized penalty method is carried out. Denoting by h the discretization parameter, we show that the error terms we consider give the same estimates as in the case of the constrained problem when the penalty parameter is such that epsilon = h. We finally extend the results to the case where given (Tresca) friction is taken into account. (c) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 26 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
[Anonymous], 1980, Appl. Math., DOI DOI 10.21136/AM.1980.103868
[3]  
[Anonymous], 2002, Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
[4]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[5]   FINITE-ELEMENT APPROXIMATION OF THE DIRICHLET PROBLEM USING THE BOUNDARY PENALTY METHOD [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1986, 49 (04) :343-366
[6]  
Bernardi Christine, 1994, Nonlinear Partial Equ. Appl.
[7]   ITERATIVE METHODS FOR THE SOLUTION OF ELLIPTIC PROBLEMS ON REGIONS PARTITIONED INTO SUBSTRUCTURES [J].
BJORSTAD, PE ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) :1097-1120
[8]  
Bramble JH, 2002, MATH COMPUT, V71, P147, DOI 10.1090/S0025-5718-01-01314-X
[9]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[10]   A priori error estimates for hp penalty BEM for contact problems in elasticity [J].
Chernov, A. ;
Maischak, M. ;
Stephan, E. P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3871-3880