Six-dimensional superconformal couplings of non-abelian tensor and hypermultiplets

被引:21
|
作者
Samtleben, Henning [1 ]
Sezgin, Ergin [2 ]
Wimmer, Robert [1 ,3 ]
机构
[1] Univ Lyon, Lab Phys, Ecole Normale Super Lyon, CNRS,UMR 5672, F-69364 Lyon 07, France
[2] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, College Stn, TX 77843 USA
[3] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
来源
基金
美国国家科学基金会;
关键词
Brarie Dynamics in Gauge Theories; Gauge Symmetry; Conformal Field Models in String Theory; M-Theory; SUPERSYMMETRIC SIGMA-MODEL; MATTER COUPLINGS; STRING THEORY; KAHLER; DYNAMICS; HYPERKAHLER;
D O I
10.1007/JHEP03(2013)068
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construe six-dimensional superconformal models with non-abelian tensor and hypermultiplets. They describe the field content of (2, 0) theories, coupled to (11, 0) vector nmltiplets. The latter are part of the non-abelian gauge structure that also includes non-dynamical three- and four-forms. The hypernmltiplets are described by gauged nonlinear sigma models with a hyper-Kahler cone target space. We also address the question of constraints in these models and show that their resolution requires the inclusion of abelian factors. These provide couplings that were previously considered for anomaly cancellations with abelian tensor multiplets and resulted in the selection of ADE gauge groups.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Toward a Theory of Non-Abelian Tensor Fields
    E. T. Akhmedov
    Theoretical and Mathematical Physics, 2005, 145 : 1646 - 1665
  • [22] Interaction of non-Abelian tensor gauge fields
    Savvidy, George
    PHYSICS LETTERS B, 2018, 776 : 440 - 446
  • [23] On the non-abelian tensor product of Lie algebras
    Salemkar, Ali Reza
    Tavallaee, Hamid
    Mohammadzadeh, Hamid
    Edalatzadeh, Behrouz
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 333 - 341
  • [24] A non-abelian tensor product of Leibniz algebras
    Gnedbaye, AV
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1149 - +
  • [25] LINEARITY PROBLEM FOR NON-ABELIAN TENSOR PRODUCTS
    Bardakov, Valeriy G.
    Lavrenov, Andrei, V
    Neshchadim, Mikhail, V
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (01) : 269 - 281
  • [26] Non-abelian tensor-multiplet anomalies
    Harvey, JA
    Minasian, R
    Moore, G
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (09):
  • [27] Toward a theory of non-Abelian tensor fields
    Akhmedov, ET
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (03) : 1646 - 1665
  • [28] NON-ABELIAN GAUGE ANTISYMMETRIC TENSOR FIELDS
    SOLODUKHIN, SN
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (11): : 1275 - 1291
  • [29] The non-abelian tensor multiplet in loop space
    Gustavsson, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (01):
  • [30] On the finiteness of the non-abelian tensor product of groups
    Bastos, Raimundo
    Nakaoka, Irene N.
    Rocco, Norai R.
    JOURNAL OF ALGEBRA, 2025, 664 : 251 - 267