Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites

被引:49
|
作者
Sahar, Shafaq [1 ]
Zeb, Akif [1 ,2 ]
Liu, Yanan [1 ]
Ullah, Naseeb [1 ]
Xu, Anwu [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem, Hefei 230026, Anhui, Peoples R China
[2] Natl Univ Sci & Technol, IESE, SCEE, Sect H-12, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
Fe3O4/g-C3N4; nanocomposites; Fenton reaction; Dye degradation; Peroxidase activity; Horseradish peroxidase mimicking; Dopamine oxidation; GRAPHITIC CARBON NITRIDE; PHOTOCATALYTIC ACTIVITY; HYDROGEN-PEROXIDE; CO2; REDUCTION; COMPOSITE; G-C3N4; OXIDE; DEGRADATION; OXIDATION; DECOMPOSITION;
D O I
10.1016/S1872-2067(17)62957-7
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We prepared the Fe3O4/g-C3N4 nanoparticles (NPs) through a simple electrostatic self-assembly method with a 3:97 weight ratio to investigate their Fenton, photo-Fenton and oxidative functionalities besides photocatalytic functionality. We observed an improvement of the Fenton and photo -Fenton activities of the Fe3O4/g-C3N4 nanocomposites. This improvement was attributed to efficient charge transfer between Fe3O4 and g-C3N4 at the heterojunctions, inhibition of electron-hole recombination, a high surface area, and stabilization of Fe3O4 against leaching by the hydrophobic g-C3N4. The obtained NPs showed a higher degradation potential for rhodamine B (RhB) dye than those of Fe3O4 and g-C3N4. As compared to photocatalysis, the efficiency of RhB degradation in the Fenton and photo-Fenton reactions was increased by 20% and 90%, respectively. Additionally, the horseradish peroxidase (HRP) activity of the prepared nanomaterials was studied with 3,3,5,5-tetramethylbenzidinedihydrochloride (TMB) as a substrate. Dopamine oxidation was also examined. Results indicate that Fe3O4/g-C3N4 nanocomposites offers more efficient degradation of RhB dye in a photo-Fenton system compared with regular photocatalytic degradation, which requires a long time. Our study also confirmed that Fe3O4/g-C3N4 nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB. These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2110 / 2119
页数:10
相关论文
共 50 条
  • [21] Design and photo-Fenton performance of Graphene/CuS/Fe3O4 tertiary nanocomposites for Rhodamine B degradation
    Matos, Renata
    Kuzniarska-Biernacka, Iwona
    Rocha, Mariana
    Belo, Joao H.
    Araujo, Joao Pedro
    Estrada, Ana C.
    Lopes, Joana L.
    Shah, Tushti
    Korgel, Brian A.
    Pereira, Clara
    Trindade, Tito
    Freire, Cristina
    CATALYSIS TODAY, 2023, 418
  • [22] scheme γ-Fe2O3/g-C3N4 in Photo-Fenton reaction for oxytetracycline degradation: Mechanism study and DFT calculation
    Yang, Cheng
    Zhong, Haoxiang
    Deng, Jiaqin
    Li, Meifang
    Tang, Chunfang
    Hu, Xinjiang
    Zhu, Mingshan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [23] New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors: A case study of Fe/g-C3N4
    Li, Keyan
    Liang, Yan
    Yang, Hong
    An, Sufeng
    Shi, Hainan
    Song, Chunshan
    Guo, Xinwen
    CATALYSIS TODAY, 2021, 371 : 58 - 63
  • [24] High-efficiency removal of tetracycline by carbon-bridge-doped g-C3N4/Fe3O4 magnetic heterogeneous catalyst through photo-Fenton process
    Zhang, Xiao
    Ren, Bin
    Li, Xi
    Liu, Biming
    Wang, Shiwen
    Yu, Peng
    Xu, Yanhua
    Jiang, Guoqiang
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 418
  • [25] BioTemplated Fe3+-Doped g-C3N4 Heterojunction Micromotors for the Degradation of Tetracycline through the Photo-Fenton Reaction
    Gan, Qingbao
    Zhang, Jianwei
    Wang, Jinglin
    Wei, Yuntian
    Chen, Shikun
    Cai, Shuguang
    Xiao, Xueqing
    Zheng, Chan
    CATALYSTS, 2024, 14 (09)
  • [26] Structural Effects of Fe3O4 Nanocrystals on Peroxidase-Like Activity
    Liu, Shanhu
    Lu, Feng
    Xing, Ruimin
    Zhu, Jun-Jie
    CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (02) : 620 - 625
  • [27] Co–Fe quantum dots coupled with ultrathin g-C3N4 nanosheets as efficient and stable photo-Fenton catalysts
    Jia-Yu Li
    Xin-Yu Wang
    Jian Tian
    Xiao-Li Zhang
    Feng Shi
    Rare Metals, 2023, 42 : 1877 - 1887
  • [28] Insight into the enhanced organic pollutants via photo-Fenton of Fe3O4/ MnO2 nanoreactor
    Wu, Fan
    Wang, Jingyi
    Zhou, Lei
    Yuan, Haoning
    Pan, Yuwei
    Han, Jiangang
    Xing, Weinan
    Wu, Guangyu
    Huang, Yudong
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 172
  • [29] Step scheme Fe2O3/S doped g-C3N4 heterojunction photocatalysts for photo-fenton norfloxacin and tetracycline degradation
    Zhu, Zhengqiaoruo
    Zhou, Nan
    Li, Yakun
    Zhang, Xiaoli
    Zhang, Linlin
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 160
  • [30] Construction of flower-like MoS2/Fe3O4/rGO composite with enhanced photo-Fenton like catalyst performance
    Mu, Dongzhao
    Chen, Zhe
    Shi, Hongfei
    Tan, Naidi
    RSC ADVANCES, 2018, 8 (64): : 36625 - 36631