Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites

被引:49
|
作者
Sahar, Shafaq [1 ]
Zeb, Akif [1 ,2 ]
Liu, Yanan [1 ]
Ullah, Naseeb [1 ]
Xu, Anwu [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem, Hefei 230026, Anhui, Peoples R China
[2] Natl Univ Sci & Technol, IESE, SCEE, Sect H-12, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
Fe3O4/g-C3N4; nanocomposites; Fenton reaction; Dye degradation; Peroxidase activity; Horseradish peroxidase mimicking; Dopamine oxidation; GRAPHITIC CARBON NITRIDE; PHOTOCATALYTIC ACTIVITY; HYDROGEN-PEROXIDE; CO2; REDUCTION; COMPOSITE; G-C3N4; OXIDE; DEGRADATION; OXIDATION; DECOMPOSITION;
D O I
10.1016/S1872-2067(17)62957-7
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We prepared the Fe3O4/g-C3N4 nanoparticles (NPs) through a simple electrostatic self-assembly method with a 3:97 weight ratio to investigate their Fenton, photo-Fenton and oxidative functionalities besides photocatalytic functionality. We observed an improvement of the Fenton and photo -Fenton activities of the Fe3O4/g-C3N4 nanocomposites. This improvement was attributed to efficient charge transfer between Fe3O4 and g-C3N4 at the heterojunctions, inhibition of electron-hole recombination, a high surface area, and stabilization of Fe3O4 against leaching by the hydrophobic g-C3N4. The obtained NPs showed a higher degradation potential for rhodamine B (RhB) dye than those of Fe3O4 and g-C3N4. As compared to photocatalysis, the efficiency of RhB degradation in the Fenton and photo-Fenton reactions was increased by 20% and 90%, respectively. Additionally, the horseradish peroxidase (HRP) activity of the prepared nanomaterials was studied with 3,3,5,5-tetramethylbenzidinedihydrochloride (TMB) as a substrate. Dopamine oxidation was also examined. Results indicate that Fe3O4/g-C3N4 nanocomposites offers more efficient degradation of RhB dye in a photo-Fenton system compared with regular photocatalytic degradation, which requires a long time. Our study also confirmed that Fe3O4/g-C3N4 nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB. These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions. (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2110 / 2119
页数:10
相关论文
共 50 条
  • [1] Fe-doped g-C3N4 synthesized by supramolecular preorganization for enhanced photo-Fenton activity
    An, Qi
    Zhang, Hang
    Liu, Ning
    Wu, Shuai
    Chen, Shuo
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 315
  • [2] Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities
    Miao, Wei
    Liu, Ying
    Chen, Xiaoyan
    Zhao, Yixin
    Mao, Shun
    CARBON, 2020, 159 : 461 - 470
  • [3] Fenton activity on RhB degradation of magnetic g-C3N4/diatomite/Fe3O4 composites
    Xiong, Chunyu
    Ren, Qifang
    Liu, Xinyu
    Jin, Zhen
    Ding, Yi
    Zhu, Haitao
    Li, Jinpeng
    Chen, Ranran
    APPLIED SURFACE SCIENCE, 2021, 543
  • [4] Fenton activity on RhB degradation of magnetic g-C3N4/diatomite/Fe3O4 composites
    Xiong, Chunyu
    Ren, Qifang
    Liu, Xinyu
    Jin, Zhen
    Ding, Yi
    Zhu, Haitao
    Li, Jinpeng
    Chen, Ranran
    Applied Surface Science, 2021, 543
  • [5] Photoelectrochemical and photo-Fenton properties of ZnFe2O4@g-C3N4 nanocomposites
    Li, Zhiming
    Wei, Zhiqiang
    Ding, Meijie
    Zhao, Jiwei
    Yu, Qingsong
    Zhou, Meipan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (18)
  • [6] Effect of wavelength in light irradiation for Fe2+/Fe3+ redox cycle of Fe3O4/g-C3N4 in photocatalysis and photo-Fenton systems
    Permana, Muhamad Diki
    Takei, Takahiro
    Khatun, Anjuman Ara
    Eddy, Diana Rakhmawaty
    Saito, Norio
    Kumada, Nobuhiro
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2024, 457
  • [7] Magnetic recyclable g-C3N4/Fe3O4@MIL-100(Fe) ternary catalyst for photo-Fenton degradation of ciprofloxacin
    He, Wenjuan
    Jia, Hongping
    Li, Zuopeng
    Miao, Chang-qing
    Lu, Runhua
    Zhang, Sanbing
    Zhang, Zhiqiang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [8] A type II heterojunction α-Fe2O3/g-C3N4 for the heterogeneous photo-Fenton degradation of phenol
    Ge, Fuxiang
    Li, Xuehua
    Wu, Mian
    Ding, Hui
    Li, Xiaobing
    RSC ADVANCES, 2022, 12 (14) : 8300 - 8309
  • [9] Superior photo-Fenton activity towards chlortetracycline degradation over novel g-C3N4 nanosheets/schwertmannite nanocomposites with accelerated Fe(III)/Fe(II) cycling
    Qiao, Xing-Xing
    Liu, Xiang-Ji
    Zhang, Wen-Ying
    Cai, Yong-Li
    Zhong, Zhou
    Li, Ya-Feng
    Lu, Jian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 279
  • [10] Enhanced visible-light-driven photocatalysis via magnetic nanocomposites: A comparative study of g-C3N4, g-C3N4/Fe3O4, and g-C3N4/Fe3O4/ZnO
    Ziaalmolki, Sahar
    Aslibeiki, Bagher
    Zarei, Mahmoud
    Torkamani, Reza
    Sarkar, Tapati
    MATERIALS TODAY COMMUNICATIONS, 2023, 37