Image Resampling Detection Based on Convolutional Neural Network

被引:8
|
作者
Liang, Yaohua [1 ]
Fang, Yanmei [1 ]
Luo, Shangjun [1 ]
Chen, Bing [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
来源
2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019) | 2019年
关键词
Forensics; Image Resampling Detection; Deep Learning; Convolutional Neural Network;
D O I
10.1109/CIS.2019.00061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When an image is under tamper, resampling is one of the most common way to cover the tampering artifacts. With the development of tamper tools, it is difficult to detect the trace of resampling through artificial features to verify the integrity of image. Recently, with the great breakthrough of Deep Learning in computer vision, it is necessary to apply it to the field of digital forensic like resampling detection. As is well known that there is a strongly relationship between the pixels and its surroundings in the resampled image, and the Convolutional Neural Network (CNN) is good at learning the underlying relationship. Low-dimensional feature can hardly find out the trace introduced by resampling while high-dimensional feature is capable of doing this. The CNN has excellent feature extraction ability of distinguishing different feature patterns easily in the high-dimensional space. In this paper, we propose a novel resampling detection supervised CNN that can automatically learn the resampling pattern on the basis of residual mapping relationship. Experimental results show that the proposed method has an excellent performance on different resampling factor detection. Moreover, experiments demonstrate the robustness against the noise of the proposed method. After noise is introduced into the resampled images, our method still learn image resampling pattern and effectively distinguish images with different resampling factors. By detecting the resampled image generated by bilinear interpolation, it is shown that our method is aimed at the resampling pattern rather than the feature pattern of cubic interpolation. Finally, the resampling blind detection experiment show that the proposed CNN can indeed detect the resampling feature pattern.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 50 条
  • [31] Recyclable solid waste detection based on image fusion and convolutional neural network
    Xiao, Yao
    Chen, Bin
    Feng, Changhao
    Qin, Jiongming
    Wang, Cong
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2024, 26 (04) : 2043 - 2057
  • [32] A Convolutional Neural Network-based Approach For Image Analysis and Injection Detection
    Titouna, Chafiq
    Nait-Abdesselam, Farid
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, AVSS 2024, 2024,
  • [33] Resampling detection of recompressed images via dual-stream convolutional neural network
    Cao, Gang
    Zhou, Antao
    Huang, Xianglin
    Song, Gege
    Yang, Lifang
    Zhu, Yonggui
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) : 5022 - 5040
  • [34] Image Forgery Detection Based On Parallel Convolutional Neural Networks
    Korkmaz, Ahmet
    Hanilci, Cemal
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [35] Image fire detection algorithms based on convolutional neural networks
    Li, Pu
    Zhao, Wangda
    CASE STUDIES IN THERMAL ENGINEERING, 2020, 19
  • [36] Traffic Sign Detection and Recognition Based on Convolutional Neural Network
    Sun, Ying
    Ge, Pingshu
    Liu, Dequan
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2851 - 2854
  • [37] Image dehazing network based on improved convolutional neural network
    Dai C.
    International Journal of Manufacturing Technology and Management, 2024, 38 (4-5) : 302 - 320
  • [38] DETECTION OF CEREBRAL MICROBLEEDING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Siyuan
    Lu, Zhihai
    Hou, Xiaoxia
    Cheng, Hong
    Wang, Shuihua
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 93 - 96
  • [39] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [40] A Novel Approach for Biofilm Detection Based on a Convolutional Neural Network
    Dimauro, Giovanni
    Deperte, Francesca
    Maglietta, Rosalia
    Bove, Mario
    La Gioia, Fabio
    Reno, Vito
    Simone, Lorenzo
    Gelardi, Matteo
    ELECTRONICS, 2020, 9 (06)