Hierarchical Key-Frame Based Video Shot Clustering Using Generalized Trace Kernel

被引:0
|
作者
Amiri, Ali [1 ]
Abdollahi, Neda [2 ]
Jafari, Mohammad [2 ]
Fathy, Mahmood [3 ]
机构
[1] Zanjan Univ, Comp Engn Grp, Zanjan, Iran
[2] Islamic Azad Univ, Dept Elect & Comp Engn, Zanjan, Iran
[3] Iran Univ Sci & Technol, Dept Comp Engn, Tehran, Iran
来源
INNOVATIVE COMPUTING TECHNOLOGY | 2011年 / 241卷
关键词
content based video retrieval; video indexing; trace kernel; shot clustering; key frame;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new generalized trace kernel for measuring the similarity between data points of matrices form which have the same number of rows and different number of columns. Also, we propose a hierarchical clustering algorithm based on this kernel function. The clustering algorithm has been utilized in a video indexing system to cluster video shots. The experimental results on TRECVID 2006 data set confirm the effectiveness of the proposed kernel function and clustering algorithm.
引用
收藏
页码:251 / +
页数:2
相关论文
共 49 条
  • [31] Key Frame Extraction Algorithm for Surveillance Video Based on Golden Section
    Zhao, Aodi
    Lai, Yi
    Liu, Ying
    Leng, Hanbing
    2019 INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS (SPSS 2019), 2019, : 78 - 81
  • [32] Key frame estimation in video using randomness measure of feature point pattern
    Mukherjee, Dipti Prasad
    Das, Sitansu Kumar
    Saha, Subhra
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2007, 17 (05) : 612 - 620
  • [33] Video Key Frame Monitoring Algorithm and Virtual Reality Display Based on Motion Vector
    Wang, Zhe
    Zhu, Yan
    IEEE ACCESS, 2020, 8 (08): : 159027 - 159038
  • [34] Development and experiment of blooming video monitoring system based on key frame extraction method
    Gao, Lin
    Wang, Lu
    Yan, Lei
    Zhang, Junguo
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (01): : 121 - 128
  • [35] Key Frame Extraction Algorithm for Video Images Based on Correlation Coefficient of Overlap Regions
    Lu X.
    Lu Y.
    Jiao J.
    Tong X.
    Zhang J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (02): : 260 - 267
  • [36] A novel video abstraction method based on fast clustering of the regions of interest in key frames
    Song, Guang-Hua
    Ji, Qing-Ge
    Lu, Zhe-Ming
    Fang, Zhi-Dan
    Xie, Zhen-Hua
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2014, 68 (08) : 783 - 794
  • [37] Key Frame Extraction for Video Content Summarization Using Orthogonal Transforms and Fractional Energy Coefficients
    Tonge, Ashvini A.
    Thepade, Sudeep D.
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING (ICIP), 2015, : 642 - 646
  • [38] Content-based video retrieval using the Shot Cluster Tree
    Cheng, WG
    Xu, D
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2901 - 2906
  • [39] Key-frame-based depth propagation for semi-automatic stereoscopic video conversion
    Lin, Guo-Shiang
    Huang, Jian-Fa
    Lie, Wen-Nung
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 43 : 127 - 137
  • [40] A novel RS-based key frame representation for video mining in Compressed-Domain
    Li Xiang-wei
    Zhang Ming-xin
    Li Xiang-wei
    Zhu Ya-lin
    Xin jin-hong
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 199 - +