Transient analysis of fluid models via elementary level-crossing arguments

被引:24
作者
Ahn, S
Ramaswami, V
机构
[1] Univ Seoul, Dept Stat, Seoul 130743, South Korea
[2] AT&T Labs Res, Florham Pk, NJ USA
关键词
fluid-flow; matrix-geometric method; transient results;
D O I
10.1080/15326340500481788
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An analysis of the time-dependent evolution of the canonical Markov modulated fluid flow model is presented using elementary level-crossing arguments.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 22 条
[1]   A two-level traffic shaper for an on-off source [J].
Adan, I ;
Resing, J .
PERFORMANCE EVALUATION, 2000, 42 (04) :279-298
[2]   Steady state analysis of finite fluid flow models using finite QBDs [J].
Ahn, S ;
Jeon, J ;
Ramaswami, V .
QUEUEING SYSTEMS, 2005, 49 (3-4) :223-259
[3]   Efficient algorithms for transient analysis of stochastic fluid flow models [J].
Ahn, S ;
Ramaswami, V .
JOURNAL OF APPLIED PROBABILITY, 2005, 42 (02) :531-549
[4]   Transient analysis of fluid flow models via stochastic coupling to a queue [J].
Ahn, S ;
Ramaswami, V .
STOCHASTIC MODELS, 2004, 20 (01) :71-101
[5]   Fluid flow models and queues - A connection by stochastic coupling [J].
Ahn, S ;
Ramaswami, V .
STOCHASTIC MODELS, 2003, 19 (03) :325-348
[6]   STOCHASTIC-THEORY OF A DATA-HANDLING SYSTEM WITH MULTIPLE SOURCES [J].
ANICK, D ;
MITRA, D ;
SONDHI, MM .
BELL SYSTEM TECHNICAL JOURNAL, 1982, 61 (08) :1871-1894
[7]  
[Anonymous], 1995, STOCH MODELS
[8]  
ASMUSSEN S, 1994, J APPL MATH STOCH AN, V7, P269
[9]   NEW APPROACH TO THE LIMIT THEORY OF RECURRENT MARKOV-CHAINS [J].
ATHREYA, KB ;
NEY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :493-501
[10]  
CINLAR E, 1975, INTRO STOCASTIC PROC