The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

被引:28
|
作者
Berg, A. R. [1 ]
Heald, C. L. [2 ,3 ]
Hartz, K. E. Huff [4 ]
Hallar, A. G. [5 ]
Meddens, A. J. H. [6 ]
Hicke, J. A. [6 ]
Lamarque, J. -F. [7 ]
Tilmes, S. [7 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[2] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[4] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
[5] Desert Res Inst, Storm Peak Lab, Steamboat Springs, CO USA
[6] Univ Idaho, Dept Geog, Moscow, ID 83843 USA
[7] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
LODGEPOLE PINE; TREE MORTALITY; NATURAL DISTURBANCES; UNITED-STATES; ALPHA-PINENE; FOREST; OXIDATION; OZONE; MASS; OZONOLYSIS;
D O I
10.5194/acp-13-3149-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km(2) of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.
引用
收藏
页码:3149 / 3161
页数:13
相关论文
共 50 条
  • [41] Aerosol high water contents favor sulfate and secondary organic aerosol formation from fossil fuel combustion emissions
    Xiaojuan Huang
    Zhe Liu
    Yanzhen Ge
    Qing Li
    Xiaofei Wang
    Hongbo Fu
    Jian Zhu
    Bin Zhou
    Lin Wang
    Christian George
    Yan Wang
    Xinfeng Wang
    Jixin Su
    Likun Xue
    Shaocai Yu
    Abdewahid Mellouki
    Jianmin Chen
    npj Climate and Atmospheric Science, 6
  • [42] Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor
    Tkacik, Daniel S.
    Lambe, Andrew T.
    Jathar, Shantanu
    Li, Xiang
    Presto, Albert A.
    Zhao, Yunliang
    Blake, Donald
    Meinardi, Simone
    Jayne, John T.
    Croteau, Philip L.
    Robinson, Allen L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (19) : 11235 - 11242
  • [43] Monoterpene emissions from Beech (Fagus sylvatica) in a French forest and impact on secondary pollutants formation at regional scale
    Moukhtar, S
    Bessagnet, B
    Rouil, L
    Simon, V
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (19) : 3535 - 3547
  • [44] Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging
    Tiitta, Petri
    Leskinen, Ari
    Hao, Liqing
    Yli-Pirila, Pasi
    Kortelainen, Miika
    Grigonyte, Julija
    Tissari, Jarkko
    Lamberg, Heikki
    Hartikainen, Anni
    Kuuspalo, Kari
    Kortelainen, Aki-Matti
    Virtanen, Annele
    Lehtinen, Kari E. J.
    Komppula, Mika
    Pieber, Simone
    Prevot, Andre S. H.
    Onasch, Timothy B.
    Worsnop, Douglas R.
    Czech, Hendryk
    Zimmermann, Ralf
    Jokiniemi, Jorma
    Sippula, Olli
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (20) : 13251 - 13269
  • [45] Secondary Organic Aerosol Formation from Photo-Oxidation of Unburned Fuel: Experimental Results and Implications for Aerosol Formation from Combustion Emissions
    Jathar, Shantanu H.
    Miracolo, Marissa A.
    Tkacik, Daniel S.
    Donahue, Neil M.
    Adams, Peter J.
    Robinson, Allen L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (22) : 12886 - 12893
  • [46] An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
    Wang, Yujuan
    Zhang, Peng
    Li, Jie
    Liu, Yaman
    Zhang, Yanxu
    Li, Jiawei
    Han, Zhiwei
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (21) : 7995 - 8021
  • [47] Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions
    Zhang, Q. J.
    Beekmann, M.
    Freney, E.
    Sellegri, K.
    Pichon, J. M.
    Schwarzenboeck, A.
    Colomb, A.
    Bourrianne, T.
    Michoud, V.
    Borbon, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (24) : 13973 - 13992
  • [48] Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle
    Suarez-Bertoa, R.
    Zardini, A. A.
    Platt, S. M.
    Hellebust, S.
    Pieber, S. M.
    El Haddad, I.
    Temime-Roussel, B.
    Baltensperger, U.
    Marchand, N.
    Prevot, A. S. H.
    Astorga, C.
    ATMOSPHERIC ENVIRONMENT, 2015, 117 : 200 - 211
  • [49] Importance of Wintertime Anthropogenic Glyoxal and Methylglyoxal Emissions in Beijing and Implications for Secondary Organic Aerosol Formation in Megacities
    Qiu, Xionghui
    Wang, Shuxiao
    Ying, Qi
    Duan, Lei
    Xing, Jia
    Cao, Jingyuan
    Wu, Di
    Li, Xiaoxiao
    Xing Chengzhi
    Yan, Xiao
    Liu, Cheng
    Hao, Jiming
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (19) : 11809 - 11817
  • [50] Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber
    Nordin, E. Z.
    Eriksson, A. C.
    Roldin, P.
    Nilsson, P. T.
    Carlsson, J. E.
    Kajos, M. K.
    Hellen, H.
    Wittbom, C.
    Rissler, J.
    Londahl, J.
    Swietlicki, E.
    Svenningsson, B.
    Bohgard, M.
    Kulmala, M.
    Hallquist, M.
    Pagels, J. H.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (12) : 6101 - 6116