Effluent characterization, water quality monitoring and sediment monitoring in the metal mining EEM program

被引:4
|
作者
Parker, R
Dumaresq, C
机构
[1] Environm Canada, Atlantic Reg, Fredericton, NB E3B 6Z3, Canada
[2] Environm Canada, Natl Environm Effects Monitoring Off, Ottawa, ON K1A 0H3, Canada
来源
WATER QUALITY RESEARCH JOURNAL OF CANADA | 2002年 / 37卷 / 01期
关键词
water quality; effluent quality; sediment; metal mining; monitoring;
D O I
10.2166/wqrj.2002.014
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The metal mining Environmental Effects Monitoring (EEM) program will require mines to conduct effluent characterization and water quality monitoring on an ongoing basis. Samples will be collected four times a year, and will be analyzed for a range of parameters. This information will be used to aid in the design and interpretation of fish surveys and benthic invertebrate community surveys. There are also a number of water quality monitoring methods that may be used to help determine the cause of any effects identified by the EEM program. Mines will also be required to collect sediment samples for determination of particle size distribution and total organic carbon. This information will be used in the design and interpretation of benthic invertebrate community surveys. A range of sediment monitoring techniques are available to aid in the determination of the causes of effects on the benthic invertebrate community.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [41] Water Quality Monitoring in Urban Area
    Zulkhairi, M. S. Mohd
    Farid, M. F. Muhammad
    Farahin, K. Siti
    Puaad, Muhammad Bazli Faliq Mohd
    Mohammad, S. N.
    ADVANCED SCIENCE LETTERS, 2018, 24 (06) : 4206 - 4208
  • [42] LAKE WATER QUALITY MONITORING TOOLS
    Bratic, G.
    Carrion, D.
    Cannata, M.
    Rogora, M.
    Strigaro, D.
    Brovelli, M. A.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 43-B4 : 599 - 606
  • [43] Optofluidic Technology for Water Quality Monitoring
    Wang, Ning
    Dai, Ting
    Lei, Lei
    MICROMACHINES, 2018, 9 (04):
  • [44] Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework
    Alameddine, Ibrahim
    Karmakar, Subhankar
    Qian, Song S.
    Paerl, Hans W.
    Reckhow, Kenneth H.
    WATER RESOURCES RESEARCH, 2013, 49 (10) : 6933 - 6945
  • [45] Substratum Quality Indicators for Monitoring Revegetated Mining Areas
    Pelaez Ocampo Almeida, Raquel Olimpia
    Sanchez, Luis Enrique
    FLORESTA E AMBIENTE, 2015, 22 (02): : 153 - 163
  • [46] Assessing redesigned effectiveness of the water quality monitoring program in the Indian River Lagoon, Florida
    Sigua, GC
    Tweedale, WA
    AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2004, 14 (01) : 49 - 64
  • [47] Multiparameter Water Quality Monitoring System for Continuous Monitoring of Fresh Waters
    Krkljes, Damir B.
    Kitic, Goran V.
    Petes, Csaba M.
    Birgermajer, Slobodan S.
    Stanojev, Jovana D.
    Bajac, Branimir M.
    Panic, Marko N.
    Radonic, Vasa M.
    Brceski, Ilija D.
    Stravs, Rok M.
    Jankovic, Nikolina N.
    Matovic, Jovan B.
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 11246 - 11260
  • [48] Monitoring and modelling of water quality parameters using artificial intelligence
    Omar, Dayang P. M. A.
    Hayder, Gasim
    Hung, Yung-Tse
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND WASTE MANAGEMENT, 2023, 31 (04) : 525 - 533
  • [49] The Implications of Monitoring Frequency for Describing Riverine Water Quality Regimes
    Sergeant, C. J.
    Nagorski, S.
    RIVER RESEARCH AND APPLICATIONS, 2015, 31 (05) : 602 - 610
  • [50] Optimization models for siting water quality monitoring stations in a catchment
    Jehng-Jung Kao
    Pei-Hao Li
    Wen-Shin Hu
    Environmental Monitoring and Assessment, 2012, 184 : 43 - 52