Collisions of random walks

被引:18
|
作者
Barlow, Martin T. [1 ]
Peres, Yuval [2 ]
Sousi, Perla [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Univ Cambridge, Cambridge, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2012年 / 48卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Random walks; Collisions; Transition probability; Branching processes; CLUSTER;
D O I
10.1214/12-AIHP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z(d) with d >= 19 and the uniform spanning tree in Z(2) all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.
引用
收藏
页码:922 / 946
页数:25
相关论文
共 50 条
  • [41] Non Unitary Random Walks
    Jacquet, Philippe
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2010, 12 (02): : 333 - 362
  • [42] Random Walks on a Fractal Solid
    John J. Kozak
    Journal of Statistical Physics, 2000, 101 : 405 - 414
  • [43] Least squares as random walks
    Kostinski, Alexander
    Ierley, Glenn
    Kostinski, Sarah
    PHYSICS LETTERS A, 2025, 545
  • [44] Which random walks are cyclic?
    Gabrielli, Davide
    Valente, Carla
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 9 : 231 - 267
  • [45] Eigenvalues of random walks on groups
    Stong, R
    ANNALS OF PROBABILITY, 1995, 23 (04) : 1961 - 1981
  • [46] Random walks on motion groups
    Raja, C. R. E.
    Schott, R.
    PROBABILITY ON ALGEBRAIC AND GEOMETRIC STRUCTURES, 2016, 668 : 171 - 178
  • [47] Fast Distributed Random Walks
    Das Sarma, Atish
    Nanongkai, Danupon
    Pandurangan, Gopal
    PODC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2009, : 161 - 170
  • [48] Large deviations for stable like random walks on Zd with applications to random walks on wreath products
    Saloff-Coste, Laurent
    Zheng, Tianyi
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 35
  • [49] Controllability of system dynamics on networks, quantum walks and random walks
    D'Alessandro, Domenico
    Olmez, Sevim
    AUTOMATICA, 2013, 49 (05) : 1358 - 1364
  • [50] Quenched Invariance Principles for Random Walks with Random Conductances
    P. Mathieu
    Journal of Statistical Physics, 2008, 130 : 1025 - 1046