Collisions of random walks

被引:18
|
作者
Barlow, Martin T. [1 ]
Peres, Yuval [2 ]
Sousi, Perla [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Univ Cambridge, Cambridge, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2012年 / 48卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Random walks; Collisions; Transition probability; Branching processes; CLUSTER;
D O I
10.1214/12-AIHP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z(d) with d >= 19 and the uniform spanning tree in Z(2) all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.
引用
收藏
页码:922 / 946
页数:25
相关论文
共 50 条
  • [21] Random Walks and Bisections in Random Circulant Graphs
    Mans, Bernard
    Shparlinski, Igor E.
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 542 - 555
  • [22] On the speed of Random Walks among Random Conductances
    Berger, Noam
    Salvi, Michele
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 1063 - 1083
  • [23] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761
  • [24] Scaling limit of the collision measures of multiple random walks
    Dinh-Toan Nguyen
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 1385 - 1410
  • [25] Random walks on a fractal solid
    Kozak, JJ
    JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (1-2) : 405 - 414
  • [26] Counting trees with random walks
    Iacobelli, Giulio
    Figueiredo, Daniel R.
    Barbosa, Valmir C.
    EXPOSITIONES MATHEMATICAE, 2019, 37 (01) : 96 - 102
  • [27] Return of Fibonacci random walks
    Neunhaeuserer, Joerg
    STATISTICS & PROBABILITY LETTERS, 2017, 121 : 51 - 53
  • [28] Random Walks on the Folded Hypercube
    Chen, Hong
    Li, Xiaoyan
    Lin, Cheng-Kuan
    JOURNAL OF INTERNET TECHNOLOGY, 2019, 20 (06): : 1987 - 1994
  • [29] Dynamical properties of random walks
    Messaoudi, Ali
    Valle, Glauco
    STOCHASTICS AND DYNAMICS, 2019, 19 (03)
  • [30] Deterministic walks in random environments
    Bunimovich, LA
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 187 (1-4) : 20 - 29