Collisions of random walks

被引:18
|
作者
Barlow, Martin T. [1 ]
Peres, Yuval [2 ]
Sousi, Perla [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Univ Cambridge, Cambridge, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2012年 / 48卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Random walks; Collisions; Transition probability; Branching processes; CLUSTER;
D O I
10.1214/12-AIHP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z(d) with d >= 19 and the uniform spanning tree in Z(2) all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.
引用
收藏
页码:922 / 946
页数:25
相关论文
共 50 条