[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Univ Cambridge, Cambridge, England
来源:
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
|
2012年
/
48卷
/
04期
基金:
加拿大自然科学与工程研究理事会;
关键词:
Random walks;
Collisions;
Transition probability;
Branching processes;
CLUSTER;
D O I:
10.1214/12-AIHP481
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z(d) with d >= 19 and the uniform spanning tree in Z(2) all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.
机构:
Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, SP, Brazil