Collisions of random walks

被引:18
|
作者
Barlow, Martin T. [1 ]
Peres, Yuval [2 ]
Sousi, Perla [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Univ Cambridge, Cambridge, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2012年 / 48卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Random walks; Collisions; Transition probability; Branching processes; CLUSTER;
D O I
10.1214/12-AIHP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z(d) with d >= 19 and the uniform spanning tree in Z(2) all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.
引用
收藏
页码:922 / 946
页数:25
相关论文
共 50 条
  • [1] Collisions of random walks in reversible random graphs
    Hutchcroft, Tom
    Peres, Yuval
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 2 - 6
  • [2] Collisions of random walks in dynamic random environments
    Halberstam, Noah
    Hutchcroft, Tom
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [3] Gaussian bounds and collisions of variable speed random walks on lattices with power law conductances
    Chen, Xinxing
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (10) : 3041 - 3064
  • [4] Tipsy cop and tipsy robber: Collisions of biased random walks on graphs
    Harris, Pamela E.
    Insko, Erik
    Lehner, Florian
    THEORETICAL COMPUTER SCIENCE, 2024, 997
  • [5] Simplicial branching random walks
    Rosenthal R.
    Journal of Applied and Computational Topology, 2024, 8 (6) : 1751 - 1791
  • [6] On random walks and switched random walks on homogeneous spaces
    Moreno, Elvira
    Velasco, Mauricio
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 398 - 421
  • [7] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01) : 456 - 490
  • [8] How random are random walks?
    Blei, R
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 19 - 31
  • [9] Network formed by traces of random walks
    Ikeda, N.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) : 701 - 713
  • [10] DEeP Random Walks
    Moghaddam, Mandana Javanshir
    Eslami, Abouzar
    Navab, Nassir
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669