Collisions of random walks

被引:19
作者
Barlow, Martin T. [1 ]
Peres, Yuval [2 ]
Sousi, Perla [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Univ Cambridge, Cambridge, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2012年 / 48卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Random walks; Collisions; Transition probability; Branching processes; CLUSTER;
D O I
10.1214/12-AIHP481
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z(d) with d >= 19 and the uniform spanning tree in Z(2) all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.
引用
收藏
页码:922 / 946
页数:25
相关论文
共 18 条
[1]   Random walk on the incipient infinite cluster on trees [J].
Barlow, Martin T. ;
Kumagai, Takashi .
ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (01) :33-65
[2]   Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree [J].
Barlow, Martin T. ;
Masson, Robert .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (01) :23-57
[3]   Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs [J].
Barlow, MT ;
Coulhon, T ;
Kumagai, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1642-1677
[4]   A resistance bound via an isoperimetric inequality [J].
Benjamini, I ;
Kozma, C .
COMBINATORICA, 2005, 25 (06) :645-650
[5]   Recurrence of random walk traces [J].
Benjamini, Itai ;
Gurel-Gurevich, Ori ;
Lyons, Russell .
ANNALS OF PROBABILITY, 2007, 35 (02) :732-738
[6]   CONTACT AND VOTER PROCESSES ON THE INFINITE PERCOLATION CLUSTER AS MODELS OF HOST-SYMBIONT INTERACTIONS [J].
Bertacchi, D. ;
Lanchier, N. ;
Zucca, F. .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (04) :1215-1252
[7]   TAIL SIGMA-FIELD OF MARKOV-CHAIN + THEOREM OF OREY [J].
BLACKWELL, D ;
FREEDMAN, D .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (03) :1291-&
[8]   A note on the finite collision property of random walks [J].
Chen, Dayue ;
Wei, Bei ;
Zhang, Fuxi .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) :1742-1747
[9]   Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive [J].
Croydon, David ;
Kumagai, Takashi .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :1419-1441
[10]  
Grimmett Geoffrey., 1999, PERCOLATION