Role of low temperature resistivity on fast electron transport in disordered aluminium and copper

被引:1
|
作者
Blackman, David R. [1 ]
Robinson, A. P. L. [2 ]
Pasley, John [1 ]
机构
[1] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[2] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
INSTABILITY;
D O I
10.1063/1.4928112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
To determine the link between the onset of the filamentation instability and the low temperature resistivity of the cold-electron plasma, a comparison between the transport of fast electrons through disordered aluminium and copper targets is made using the hybrid code Zephyros. The filamentation instability is suppressed at laser intensities below 5 x 10(19) Wcm(-2) for materials where the resistivity of the material is lower than 1 mu Omega m at 1 eV. Interestingly, copper targets show larger resistive magnetic field growth, and as a result, more collimation of the electron beam, despite having a consistently smaller resistivity at lower temperatures than that of aluminium. The increase in magnetic field strength is responsible for the suppression of the filamentation instability. This is due to the resistive filamentation growth rate for copper and aluminium, under identical conditions, being numerically very close. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Low-temperature transport in CdS disordered quantum wires: dephasing
    E Rostampour
    Indian Journal of Physics, 2021, 95 : 2335 - 2340
  • [42] A SPECIMEN HOLDER FOR LOW TEMPERATURE ELECTRON IRRADIATION OF METALLIC RESISTIVITY SPECIMENS
    DWORSCHAK, F
    NEUHAUSER, J
    SCHUSTER, H
    WOLLENBERGER, H
    WURM, J
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1970, 41 (01): : 64 - +
  • [43] Low-temperature transport in CdS disordered quantum wires: dephasing
    Rostampour, E.
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (11) : 2335 - 2340
  • [44] LOW-TEMPERATURE RECOVERY OF RESISTIVITY IN ELECTRON-IRRADIATED GOLD
    WARD, JB
    KAUFFMAN, JW
    PHYSICAL REVIEW, 1961, 123 (01): : 90 - &
  • [45] Fast and low temperature processed CsPbI 3 perovskite solar cells with ZnO as electron transport layer
    Deng, Wenqiu
    Li, Jinhua
    Jin, Junjun
    Mishra, Debesh Devadutta
    Xin, Juan
    Lin, Liangyou
    Guo, Songyang
    Xiao, Bichen
    Wilson, Gregory J.
    Wang, Xianbao
    JOURNAL OF POWER SOURCES, 2020, 480
  • [46] Low-temperature peculiarities of density of electronic states and electron transport characteristics in the disordered 2D graphene
    Bobenko, N. G.
    Egorushkin, V. E.
    Melnikova, N. V.
    Belosludtseva, A. A.
    Barkalov, L. D.
    Ponomarev, A. N.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2018, 26 (03) : 152 - 157
  • [47] TEMPERATURE-DEPENDENCE OF ELECTRICAL-RESISTIVITY OF COPPER AT LOW-TEMPERATURES
    MOUSSOUROS, PK
    KOS, JF
    CANADIAN JOURNAL OF PHYSICS, 1977, 55 (23) : 2071 - 2079
  • [48] RRR of copper coating and low temperature electrical resistivity of material for TTF couplers
    Fouaidy, M.
    Hammoudi, N.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 441 (1-2): : 137 - 144
  • [49] EFFECT OF STAGED LOW-TEMPERATURE CREEP ON RESISTIVITY AND MECHANICAL PROPERTIES OF COPPER
    GINDIN, IA
    NECHVOLO.NK
    STARODUB.YD
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1968, 26 (04): : 107 - &
  • [50] Low Temperature Growth of High Purity, Low Resistivity Copper Films by Atomic Layer Deposition
    Knisley, Thomas J.
    Ariyasena, Thiloka C.
    Sajavaara, Timo
    Saly, Mark J.
    Winter, Charles H.
    CHEMISTRY OF MATERIALS, 2011, 23 (20) : 4417 - 4419