Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case

被引:7
|
作者
Danilin, Aleksei Rufimovich [1 ]
Kovrizhnykh, Ol'ga Olegovna [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, Ekaterinburg 620000, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2022年 / 28卷 / 01期
关键词
optimal control; time-optimal control problem; unbounded target set; singularly perturbed problem; asymptotic expansion; small parameter;
D O I
10.21538/0134-4889-2022-28-1-58-73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control in the form of a ball and an unbounded target set: { <(x)over dot> = y, x, y is an element of R-2m, u is an element of R-2m, epsilon(2)<(y)over dot> = Jy + u, ||u|| <= 1, 0 < epsilon << 1, x(0) = x(0) not equal 0, y(0) = y(0), x(T-epsilon) = 0, T-epsilon -> min, where J = ( (0)(0) (Im)(0)). The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue, and thus does not satisfy the standard condition of asymptotic stability. The solvability of the problem is proved. The main system of equations for finding a solution is written. In the case m = 1, we derive and justify a complete asymptotics in the sense of Poincare with respect to the asymptotic sequence epsilon(q) ln(p) epsilon, q is an element of N, q - 1 >= p is an element of N boolean OR {0}, of the optimal time and of the vector generating the optimal control.
引用
收藏
页码:58 / 73
页数:16
相关论文
共 50 条