Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case

被引:7
|
作者
Danilin, Aleksei Rufimovich [1 ]
Kovrizhnykh, Ol'ga Olegovna [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, Ekaterinburg 620000, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2022年 / 28卷 / 01期
关键词
optimal control; time-optimal control problem; unbounded target set; singularly perturbed problem; asymptotic expansion; small parameter;
D O I
10.21538/0134-4889-2022-28-1-58-73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control in the form of a ball and an unbounded target set: { <(x)over dot> = y, x, y is an element of R-2m, u is an element of R-2m, epsilon(2)<(y)over dot> = Jy + u, ||u|| <= 1, 0 < epsilon << 1, x(0) = x(0) not equal 0, y(0) = y(0), x(T-epsilon) = 0, T-epsilon -> min, where J = ( (0)(0) (Im)(0)). The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue, and thus does not satisfy the standard condition of asymptotic stability. The solvability of the problem is proved. The main system of equations for finding a solution is written. In the case m = 1, we derive and justify a complete asymptotics in the sense of Poincare with respect to the asymptotic sequence epsilon(q) ln(p) epsilon, q is an element of N, q - 1 >= p is an element of N boolean OR {0}, of the optimal time and of the vector generating the optimal control.
引用
收藏
页码:58 / 73
页数:16
相关论文
共 50 条
  • [21] Asymptotic representation of a solution to a singular perturbation linear time-optimal problem
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (02): : 67 - 79
  • [22] Asymptotic representation of a solution to a singular perturbation linear time-optimal problem
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 281 : S22 - S35
  • [23] Asymptotic representation of a solution to a singular perturbation linear time-optimal problem
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 22 - 35
  • [24] Asymptotics of a solution to a linear optimal control problem in the singular case
    Parysheva, Y. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (03): : 266 - 270
  • [25] Asymptotics of the optimal time in a singular perturbation linear problem
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (01): : 63 - 75
  • [26] Asymptotics of a Solution to an Optimal Boundary Control Problem
    Danilin, A. R.
    Zorin, A. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 : S81 - S94
  • [27] Asymptotics of a solution to an optimal boundary control problem
    Danilin, A. R.
    Zorin, A. P.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (04): : 95 - 107
  • [28] Asymptotics of a solution to an optimal boundary control problem
    A. R. Danilin
    A. P. Zorin
    Proceedings of the Steklov Institute of Mathematics, 2010, 269 : 81 - 94
  • [29] Asymptotics of the solution to a singularly perturbed timeoptimal control problem with two small parameters
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (02): : 88 - 101
  • [30] SWITCHING IN TIME-OPTIMAL PROBLEM WITH CONTROL IN A BALL
    Agrachev, Andrei A.
    Biolo, Carolina
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) : 183 - 200