This work studies mixtures of probability measures on Rn and gives bounds on the Poincare and the log-Sobolev constants of two-component mixtures provided that each component satisfies the functional inequality, and both components are close in the 2-distance. The estimation of those constants for a mixture can be far more subtle than it is for its parts. Even mixing Gaussian measures may produce a measure with a Hamiltonian potential possessing multiple wells leading to metastability and large constants in Sobolev type inequalities. In particular, the Poincare constant stays bounded in the mixture parameter, whereas the log-Sobolev may blow up as the mixture ratio goes to 0 or 1. This observation generalizes the one by Chafai and Malrieu to the multidimensional case. The behavior is shown for a class of examples to be not only a mere artifact of the method.
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
机构:
Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Tai Po, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Tai Po, Hong Kong, Peoples R China
机构:
Politecn Torino, Dipartimento Eccellenza 20182022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Genoa, DIBRIS, MaLGa Ctr, Genoa, Italy
Santagati, F.
Tabacco, A.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Eccellenza 20182022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Genoa, DIBRIS, MaLGa Ctr, Genoa, Italy
Tabacco, A.
Vallarino, M.
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Eccellenza 20182022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Genoa, DIBRIS, MaLGa Ctr, Genoa, Italy