Poincare and Log-Sobolev Inequalities for Mixtures

被引:5
|
作者
Schlichting, Andre [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, Templergraben 55, D-52056 Aachen, Germany
来源
ENTROPY | 2019年 / 21卷 / 01期
关键词
Poincare inequality; log-Sobolev inequality; relative entropy; fisher information; Dirichlet form; mixture; finite Gaussian mixtures;
D O I
10.3390/e21010089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work studies mixtures of probability measures on Rn and gives bounds on the Poincare and the log-Sobolev constants of two-component mixtures provided that each component satisfies the functional inequality, and both components are close in the 2-distance. The estimation of those constants for a mixture can be far more subtle than it is for its parts. Even mixing Gaussian measures may produce a measure with a Hamiltonian potential possessing multiple wells leading to metastability and large constants in Sobolev type inequalities. In particular, the Poincare constant stays bounded in the mixture parameter, whereas the log-Sobolev may blow up as the mixture ratio goes to 0 or 1. This observation generalizes the one by Chafai and Malrieu to the multidimensional case. The behavior is shown for a class of examples to be not only a mere artifact of the method.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Some Remarks on the Stability of the Log-Sobolev Inequality for the Gaussian Measure
    Feo, F.
    Indrei, E.
    Posteraro, M. R.
    Roberto, C.
    POTENTIAL ANALYSIS, 2017, 47 (01) : 37 - 52
  • [22] IMPROVED POINCARE INEQUALITIES IN FRACTIONAL SOBOLEV SPACES
    Drelichman, Irene
    Duran, Ricardo G.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 885 - 903
  • [23] Dirichlet forms, Poincare inequalities, and the Sobolev spaces of Korevaar and Schoen
    Koskel, P
    Shanmugalingam, N
    Tyson, JT
    POTENTIAL ANALYSIS, 2004, 21 (03) : 241 - 262
  • [24] POINCARE AND SOBOLEV TYPE INEQUALITIES FOR WIDDER DERIVATIVES
    Anastassiou, George A.
    DEMONSTRATIO MATHEMATICA, 2009, 42 (02) : 283 - 296
  • [25] Interpolation between logarithmic Sobolev and Poincare inequalities
    Arnold, Anton
    Bartier, Jean-Philippe
    Dolbeault, Jean
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (04) : 971 - 979
  • [26] A discrete log-Sobolev inequality under a Bakry-Emery type condition
    Johnson, Oliver
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1952 - 1970
  • [27] Talagrand's inequality for interacting particle systems satisfying a log-Sobolev inequality
    Voellering, Florian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 173 - 195
  • [28] On Sobolev-Poincare-Friedrichs Type Weight Inequalities
    Mamedov, F. I.
    Mamedova, V. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2022, 12 (02): : 92 - 108
  • [29] Poincare and Logarithmic Sobolev Inequalities for Nearly Radial Measures
    Cattiaux, Patrick
    Guillin, Arnaud
    Wu, Li Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (08) : 1377 - 1398
  • [30] POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES BY DECOMPOSITION OF THE ENERGY LANDSCAPE
    Menz, Georg
    Schlichting, Andre
    ANNALS OF PROBABILITY, 2014, 42 (05) : 1809 - 1884