Aspect-Based Sentiment Analysis Using a Hybridized Approach Based on CNN and GA

被引:37
|
作者
Ishaq, Adnan [1 ]
Asghar, Sohail [1 ]
Gillani, Saira Andleeb [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Bahria Univ, Dept Comp Sci, Karachi Campus, Karachi 75260, Pakistan
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Feature extraction; Sentiment analysis; Genetic algorithms; Data mining; Semantics; Shape; Predictive models; Aspect-based sentiment analysis; convolutional neural network; genetic algorithm; ONTOLOGY; SYSTEM;
D O I
10.1109/ACCESS.2020.3011802
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sentiment analysis is a computational analysis of unstructured textual data, used to assess the person's attitude from a piece of text. Aspect-based sentimental analysis defines the relationship among opinion targets of a document and the polarity values corresponding to them. Since aspects are often implicit, it is an extremely challenging task to spot them and calculate their respective polarity. In recent years, several methods, strategies and improvements have been suggested to address these problems at various levels, including corpus or lexicon-based approaches, term frequency and reverse document frequency approaches. These strategies are quite effective when aspects are correlated with predefined groups and may struggle when low-frequency aspects are involved. In terms of accuracy, heuristic approaches are stronger than frequency and lexicon based approaches, however, they consume time due to different combinations of features. This article presents an effective method to analyze the sentiments by integrating three operations: (a) Mining semantic features (b) Transformation of extracted corpus using Word2vec (c) Implementation of CNN for the mining of opinion. The hyperparameters of CNN are tuned with Genetic Algorithm (GA). Experimental results revealed that the proposed technique gave better results than the state-of-the-art techniques with 95.5% accuracy rate, 94.3% precision rate, 91.1% recall and 96.0% f-measure rate.
引用
收藏
页码:135499 / 135512
页数:14
相关论文
共 50 条
  • [1] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [2] Aspect-based sentiment analysis using adaptive aspect-based lexicons
    Mowlaei, Mohammad Erfan
    Abadeh, Mohammad Saniee
    Keshavarz, Hamidreza
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 148
  • [3] Exploring Scope Detection for Aspect-Based Sentiment Analysis
    Jiang, Xiaotong
    You, Peiwen
    Chen, Chen
    Wang, Zhongqing
    Zhou, Guodong
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 83 - 94
  • [4] Sentiment Difficulty in Aspect-Based Sentiment Analysis
    Chifu, Adrian-Gabriel
    Fournier, Sebastien
    MATHEMATICS, 2023, 11 (22)
  • [5] Aspect-Based Sentiment Analysis With Heterogeneous Graph Neural Network
    An, Wenbin
    Tian, Feng
    Chen, Ping
    Zheng, Qinghua
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (01) : 403 - 412
  • [6] Embedding Refinement Framework for Targeted Aspect-Based Sentiment Analysis
    Liang, Bin
    Yin, Rongdi
    Du, Jiachen
    Gui, Lin
    He, Yulan
    Yang, Min
    Xu, Ruifeng
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 279 - 293
  • [7] Aspect-Based Sentiment Analysis Using Aspect Map
    Noh, Yunseok
    Park, Seyoung
    Park, Seong-Bae
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [8] Dual-Perspective Fusion Network for Aspect-Based Multimodal Sentiment Analysis
    Wang, Di
    Tian, Changning
    Liang, Xiao
    Zhao, Lin
    He, Lihuo
    Wang, Quan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 (4028-4038) : 4028 - 4038
  • [9] Short Text Aspect-Based Sentiment Analysis Based on CNN plus BiGRU
    Gao, Ziwen
    Li, Zhiyi
    Luo, Jiaying
    Li, Xiaolin
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [10] Unsupervised Semantic Approach of Aspect-Based Sentiment Analysis for Large-Scale User Reviews
    Al-Ghuribi, Sumaia Mohammed
    Mohd Noah, Shahrul Azman
    Tiun, Sabrina
    IEEE ACCESS, 2020, 8 : 218592 - 218613