SYMMETRY RESULT FOR SOME OVERDETERMINED VALUE PROBLEMS

被引:1
作者
Barkatou, Mohammed [1 ]
Khatmi, Samira [2 ]
机构
[1] Univ Chouaib Doukkali, Dept Math & Informat, El Jadida, Morocco
[2] Univ Laval, Quebec City, PQ, Canada
关键词
compatibility condition; mean curvature; Neumann problem; overdetermined problem; Serrin problem; shape optimization; symmetry;
D O I
10.1017/S1446181108000163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to prove a symmetry, result for several overdetermined boundary value problems. For the two first problems, Our method combines the maximum principle with the monotonicity of the mean curvature. For the others, we use essentially the compatibility condition of the Neumann problem problem.
引用
收藏
页码:479 / 494
页数:16
相关论文
共 21 条
[1]  
Alexandrov A. D., 1962, AM SOC T, V31, P341
[2]  
AMDEBERHAN T, 2001, ELECT J DIFFERENTIAL, V43, P1
[3]  
BARKATOU M, 2002, NEW YORK J MATH, V8, P189
[4]  
Barkatou M., 2005, OPEN MATH, V3, P39
[5]   Shape optimisation problems governed by nonlinear state equations [J].
Bucur, D ;
Trebeschi, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :945-963
[6]   N-dimensional shape optimization under capacitary constraint [J].
Bucur, D ;
Zolesio, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) :504-522
[7]  
Burago Y. D., 1988, Geometric Inequalities
[8]   EXISTENCE OF A SOLUTION IN A DOMAIN IDENTIFICATION PROBLEM [J].
CHENAIS, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 52 (02) :189-219
[9]   Overdetermined problems with possibly degenerate ellipticity, a geometric approach [J].
Fragala, Ilaria ;
Gazzola, Filippo ;
Kawohl, Bernd .
MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (01) :117-132
[10]   A symmetry problem from probability [J].
Fromm, SJ ;
McDonald, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) :3293-3297