A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice

被引:901
|
作者
Aravin, Alexei A. [1 ,2 ]
Sachidanandam, Ravi [1 ,2 ]
Bourc'his, Deborah [3 ]
Schaefer, Christopher [3 ,4 ]
Pezic, Dubravka [5 ]
Toth, Katalin Fejes [1 ,2 ]
Bestor, Timothy [4 ]
Hannon, Gregory J. [1 ,2 ]
机构
[1] Cold Spring Harbor Lab, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
[2] Cold Spring Harbor Lab, Howard Hughes Med Inst, Cold Spring Harbor, NY 11724 USA
[3] Univ Paris 07, INSERM, U741, Inst Jacques Monod, F-75251 Paris 05, France
[4] Columbia Univ, Coll Phys & Surg, Dept Genet & Dev, New York, NY 10032 USA
[5] Austrian Acad Sci, Inst Mol Biotechnol, A-1030 Vienna, Austria
关键词
D O I
10.1016/j.molcel.2008.09.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
piRNAs and Piwi proteins have been implicated in transposon control and are linked to transposon methylation in mammals. Here we examined the construction of the piRNA system in the restricted developmental window in which methylation patterns are set during mammalian embryogenesis. We find robust expression of two Piwi family proteins, MIW12 and MILL Their associated piRNA profiles reveal differences from Drosophila wherein large piRNA clusters act as master regulators of silencing. Instead, in mammals, dispersed transposon copies initiate the pathway, producing primary piRNAs, which predominantly join MILI in the cytoplasm. MIWI2, whose nuclear localization and association with piRNAs depend upon MILI, is enriched for secondary piRNAs antisense to the elements that it controls. The Piwi pathway lies upstream of known mediators of DNA methylation, since piRNAs are still produced in dnmt3L mutants, which fail to methylate transposons. This implicates piRNAs as specificity determinants of DNA methylation in germ cells.
引用
收藏
页码:785 / 799
页数:15
相关论文
共 50 条
  • [11] Lsh is involved in de novo methylation of DNA
    Muegge, Kathrin
    Geiman, Theresa
    Xi, Sichuan
    Jiang, Qiong
    Schmidtman, Anja
    Chen, Taiping
    Li, En
    Zhu, Heming
    CANCER RESEARCH, 2006, 66 (08)
  • [12] Mechanism of de novo DNA methylation in plants
    Hu, Gang
    Xu, Qiang
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (15): : 1821 - 1834
  • [13] Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons
    Lyons, David B.
    Briffa, Amy
    He, Shengbo
    Choi, Jaemyung
    Hollwey, Elizabeth
    Colicchio, Jack
    Anderson, Ian
    Feng, Xiaoqi
    Howard, Martin
    Zilberman, Daniel
    CELL REPORTS, 2023, 42 (02):
  • [14] Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family
    Ming Zhou
    Ana Marie S. Palanca
    Julie A. Law
    Nature Genetics, 2018, 50 : 865 - 873
  • [15] Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family
    Zhou, Ming
    Palanca, Ana Marie S.
    Law, Julie A.
    NATURE GENETICS, 2018, 50 (06) : 865 - +
  • [16] De novo DNA methylation: a germ cell perspective
    Smallwood, Sebastien A.
    Kelsey, Gavin
    TRENDS IN GENETICS, 2012, 28 (01) : 33 - 42
  • [17] The impact of the RASSF1C-PIWIL1-piRNA pathway on DNA methylation
    Amaar, Yousef G.
    Reeves, Mark E.
    CANCER RESEARCH, 2018, 78 (13)
  • [18] Roles of de novo DNA methylation in zebrafish lens development
    Seritrakul, Pawat
    Gross, Jeffrey
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [19] RNA silencing genes control de novo DNA methylation
    Chan, SWL
    Zilberman, D
    Xie, ZX
    Johansen, LK
    Carrington, JC
    Jacobsen, SE
    SCIENCE, 2004, 303 (5662) : 1336 - 1336
  • [20] De novo DNA methylation in neuronal and glial differentiation.
    Chin, MH
    Wu, H
    Yuan, S
    Li, E
    Sun, YE
    Fan, G
    AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (05) : 336 - 336